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ABSTRACT

A new methodology is developed for the synthesis of linear, time-invariant (LTI)

controllers for multivariable LTI systems. The resulting closed-loop system is nominally

stable and exhibits a known level of performance. In addition, robustness of the feedback

system is guaranteed. That is, stability and performance are retained in the presence of

multiple unstructured uncertainty blocks located at various points in the feedback loop.

The design technique is referred to as the Causality Recovery Methodology (CRM).

The CRM relies on the Youla parameterization of all stabilizing compensators to ensure

nominally stability of the feedback system. A frequency-domain inequality in terms of the

structured singular value _t defines the robustness specification. The optimal compensator,

with respect to the _t condition, is shown to be noncausal in general. The aim of the CRM is

to fred a stable, causal transfer function matrix that approximates the robustness

characteristics of the optimal solution.

The CRM, via a series of infinite-dimensional convex programs, produces a closed-

loop system whose performance-robustness is at least as good as that of any initial design.

The algorithm is approximated by a finite-dimensional process for the purposes of
-\

implementation. Two numerical examples confirm the potential viability of the CRM

concept; however, the robustness improvement comes at the expense of increased

computational burden and compensator complexity.
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Hilbert space of matrix-valued functions which are square integrable on

jR in the sense of the inner product on jR

<F, G> = _ f Tr [ F(j¢o)* G(jco) ] do
2x

if F,G _ L20R )

set of bounded I._ functions, defined as

BLz= { v I Ilvll:=fllv(t) 119.dt<l }

H2 the functions in L 2 that are analytic in the open right half plane and
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F
G
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FI(H,R)

Fu(H,R)

theoperatornorm of G

Hankcl operatorgencratcdby G e L**

:=D + C (sl-A )dB, transferfunctionnotation

the lower linearfractionaltransformation,equalsthe closed-loop

transfer function from u I to Yl in Figure I,

= HII + HI2 R ( I - H22 R )-I H21

the upper linear fractional transformation, equals the closed-loop

transfer function from u 2 to Y2 in Figure 2,
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U 2 Y2

R

FigureI Block diagram forthelower linearfractionaltransformation.

R

H

Yl

Y2

Figure2 Block diagram forthe upper linearfractionaltransformation.

Definition 1 A time signal fit) is left-sided stable if and only if

lim f(t) =0.
t ---) -.m
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Definition 2 A time signal f(t) is right-sided stable if and only if

nm f(O = O.
t---} _

Definition 3 A time signal f(t) is causa/if and only if

f(t) = 0 for t < 0.

Definition 4 A time signal f(t) is ant/-causa/if and only if

f(t) = 0 for t > 0.

Definition 5 A time signal f(t) is noncausa/if and only if

f(t) _ 0 for some t < O.

Remark The terms stable and causal will be used frequently throughout this thesis.

We see from the above definitions that these are fundamentally time-domain concepts. For a

frequency-domain interpretation, let F(s) be a rational transfer function matrix in RL... In

general, the poles and zeros of F(s) will lie over the entire complex plane. However since

F(s) is rational and has no poles on the imaginary axis, it must be analytic in some strip

containing the imaginary axis. Let f(t) denote the inverse bilateral Laplace transform of F(s)

with this strip being the region of convergence. Then f(t) is stable (left and fight-sided), but

noncausal in general. In this thesis, a noncausal rational transfer function is analytic in a strip

containing the imaginary axis (i.e. it may have poles in the left and right half planes).
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CHAFrER 1. INTRODUCTION

1.1 Overview

1.1.1 Motivation

Any mathematical description of a physical phenomenon is an abstraction (i.e.

simplification) of the process. The result is an inherent discrepancy between a mathematical

formulation and the plant being modeled. Therefore, a complete description of a physical

system consists not only of some nominal mathematical model, but also must include an

accompanying description of the modeling uncertainty.

The purpose of a feedback system is to improve the dynamic performance of a physical

plant in the presence of uncertainty. That is, the performance of the closed-loop system

should be insensitive to changes in the process or the environment. A common approach to

the design of a feedback system requires that the plant be described in formal mathematical

terms. The modeling procedure produces a "simple" description of the plant dynamics (i.e.

the nominal plant model), as well as a characterization of the uncertainty associated with the

nominal model. In addition to the nominal model and the uncertainty description, the desired

feedback system performance is specified. The ultimate objective of any feedback system is

to achieve the desired performance (e.g. command-following, disturbance-rejection) when

operating in a closed-loop with the actual, physical plant. This requires the nominal

mathematical system to be robust; that is, perform satisfactorily in the presence of

uncertainty.

The process of design consists of two distinct steps: analysis and synthesis. Analysis

allows one to quantitatively assess the performance of a system in terms of some

mathematical tools. Synthesis is the creation of a system with desired performance
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characteristicsexpressedin termsof the analysis framework. This thesis is concerned with

the problem of feedback system design in the presence of modeling uncertainty and the main

contributions are in the area of synthesis.

Maintaining stability in the presence of uncertainty has long been recognized as the

crucial requirement for the closed-loop system [1,2]. Classical designers developed the

concepts of gain and phase margin to quantify stability-robustness measures. In the modem

control era, criteria for maintaining closed-loop stability in the presence of a single,

unstructured (i.e. norm bounded) modeling uncertainty have been formulated in terms of a

singular value frequency-domain inequality on the closed-loop transfer function [3].

It is only recently that the issue of multiple modeling uncertainties appearing at different

locations in the feedback loop and the related requirement of performance-robustness have

been addressed [4]. Multiple unstructured uncertainty blocks, parameter uncertainty, and

performance specifications give rise to so-called structured uncertainty. A new analysis

framework based on the structured singular value, Ix, has been proposed by Doyle to assess

the stability and performance robustness of linear, time-invaxiant (LTI) feedback systems in

the presence of structured uncertainty [5].

While the analysis aspect of LTI feedback design is well-established, the definitive

robust synthesis methodology has yet to be developed. The problem of designing a feedback

system that exhibits closed-loop stability and performance in the face of modeling

uncertainty, so-called "Ix-synthesis", is nonconvex. The synthesis approach proposed by

Doyle in [6] is an iterative scheme, referred to as DK iteration, that involves a sequence of

scaled H**-based feedback design problems. Unfortunately, convergence to the global

solution is not guaranteed due to the inherent nonconvexity of the problem. Since local

solutions may result, it is worthwhile to explore other fundamentally different approaches to

Ix-synthesis that may result in feedback systems with improved robustness properties; this

provided a motivation for the thesis.
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Therewas another motivating force behind the search for a system that exhibits robust

performance in the presence of structured uncertainty: the adaptive control problem. In fact,

it provided the original impetus to this research. An adaptive system deals with uncertainty

via on-line plant identification and compensator parameter adjustment. A very active search

for a robust adaptive control methodology was begun following the discovery of fundamental

instability mechanisms in the primary adaptive algorithms due to the presence of unmodeled

dynamics [7]. A trend has developed and many researchers believe that a robust adaptive

control system must consist of a robust system identification algorithm [8] coupled with a

robust control design method [9-13]. Compensator redesign takes place infrequently

compared to the system sample period and only when more accurate information about the

system can be provided by the identification algorithm. The design of a fixed-parameter

robust compensator is at the heart of this adaptive control philosophy; such a synthesis

methodology is only currently emerging.

Over the years a great deal of attention has been paid to the development of specific

adaptive algorithms; however, very little consideration has been given to an issue at the heart

of the adaptive control problem: what are the performance benefits of adaptive control? In

theory, an adaptive control system will ultimately provide better performance with respect to

a fixed-paratmter compensator because more information about the physical plant is

incorporated into the design process (on-line). Robust adaptive control systems, in practice,

rely upon gain-scheduling for gross adaptation, some combination of external persistently

exciting signals (to ensure good identification), slow sampling (to provide stability

robustness with respect to unmodeled high-frequency dynamics [14]), and extensive real-

time computation (to provide safety nets that turn off the adaptation when it exhibits

instability [15]). These robustifying measures degrade command-following and disturbance-

rejection performance and tend to neutralize the anticipated benefits of an adaptive

compensator.
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In light of thesecircumstancesit is prudent that the decision to use adaptive control, in a

real engineering application, be based upon a quantitative assessment of the costs and

benefits of an adaptive system. A fixed-parameter feedback system designed for robust

performance may serve as a benchmark to which an adaptive control system is compared.

It is clear that a new robust design methodology will be a welcome addition to the set of

design paradigms available to the control engineer. In the sequel we develop such a

methodology.

1.1.2 Contributions of the Thesis

The primary contribution of this thesis is the development and presentation of a new

methodology for the synthesis of robust feedback systems. The design technique is referred

to as the Causality Recovery Methodology (CRM), and it may be applied to any f'mite-

dimensional, linear, and time-invariant system. Given a plant model, a description of the

modeling uncertainty, and performance specifications, the CRM will design a compensator

that yields a closed-loop system with the following guarantees:

(1)

(2)

(3)

(4)

nominal closed-loop stability

stability-robustness with respect to some modeling uncertainty

nominal performance

performance-robustness with respect to some specification

The concept of robustness margin is introduced to quantify the notion of stability and

performance robustness. The CRM is guaranteed to produce a compensator and closed-loop

system with a robustness margin greater than or equal to that of a given, fixed feedback loop.

The CRM accomplishes the improvement by augmenting the existing compensator. The

implication is that the CRM is likely to improve the performance-robustness of a compensator
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designedby anothersynthesis method.

The CRM initially lifts the natural and physically necessary restriction of compensator

causality. This permits a simpler view of the feedback problem. The stability and

performance robustness requirements may be examined on a frequency point by frequency

point basis. A feasible set of noncausal compensators, in the space of complex matrices,

satisfying the robustness condition is constructed at each frequency. Causality of the

compensator is then recovered via an optimization problem that minimizes the Hankel norm

(i.e. the measure of noncausality) over the feasible set.

From a theoretical point of view the CRM is characterized by iterating two sets of

convex static, infinite-dimensional optimization problems. The practical algorithm that has

been constructed obviously limits the set of frequency points over which the noncausal

compensator is derived, and uses a high-order, finite-dimensional compensator in the Hankel

norm minimization. Unfortunately, when these finite-dimensional approximations are used

the convexity of the underlying mathematical optimization problems is lost, and consequently

only local convergence can be guaranteed.

From an applied viewpoint, the CRM is characterized by extensive (off-line)

computational requirements. However, the programming effort is modest. In addition, part

of the design algorithm is paraUelizable, so that super-computer implementation should bring

the design time down to a reasonable level.

The development of a complete methodology for the design of robust feedback systems

(i.e. the exact global solution to the It-synthesis problem and its extensions to real parameter

uncertainty sets) will ultimately produce control systems with optimal performance in the

presence of uncertainty. The CRM represents a small step toward achieving this goal.
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1.1.3 A Historical Note

When the CRM was developed in early summer 1987, the solution of the _t-synthesis

problem using DK iteration [6, 16] was viewed as relatively cumbersome, due to the

computational complexity of solving the underlying _ synthesis problem [ 17-20]. In fact,

published numerical studies [21] did not even solve the full-blown I-I**synthesis problem

because of the computational burden.

However, a very recent advance by Doyle and Glover (as yet unpublished) was

communicated to the author in October 1987 by G. Stein [22]. Doyle and Glover have

succeeded in showing how to efficiently solve H** synthesis problems through the solution

of two (nonstandard) Riccati equations. We summarize, for the sake of completeness, these

results in Section 4.2.1. This advance greatly improves the efficiency of the DK iteration for

solving the g-synthesis problem.

1.1.4 Organization of the Thesis

The thesis is organized into 6 chapters. In the remainder of this chapter, the FDLTI

feedback design problem in the presence of uncertainty is defined. In addition, previous

results are outlined and the CRM is formally introduced. Chapter 2 contains the basic

mathematical background and concepts required by the Causality Recovery Methodology.

The primary analysis tool, the structured singular value, is defined and described. The

theory of Hankel operators is a critical element of the design method and is reviewed in

Chapter 2. Results from the field of convex optimization are briefly described as well.

Stability, performance, and robustness analysis of linear feedback systems with structured

uncertainty is discussed in Chapter 3. The main contribution of the thesis, the Causality

Recovery Methodology, is developed in Chapter 4. Chapter 5 contains two numerical
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examplesof theCRM designprocedure,andthefinal chapter discusses the results and

proposes directions for further research.

1.2 The Formal Synthesis Problem

1.2.1 Introduction

The purpose of this section is to pose the general control problem. The issues of

uncertainty and performance will be discussed, and f'mally the formal feedback synthesis

problem will be presented in a rigorous, mathematical framework.

What is the purpose of feedback? This very fundamental question must be examined

before we attempt to formulate a synthesis methodology. At the most basic level, we require

the dynamic response of some physical process to have certain characteristics or lie in some

set of desirable responses. The objective of a compensator is to generate the appropriate

inputs (i.e. controls) to the physical process so that the desirable response is achieved. It has

long been obvious that feedback (as opposed to open-loop) control is required in the face of

open-loop unstable plants, uncertain plant dynamics, and external unmeasurable disturbances

. The situation is depicted in Figure 1.1.

The uncertain plant will be modeled as a known nominal system or plant plus some

modeling error or perturbation. The precise plant perturbation is unknown; however, it is a

member of a known set of possible perturbations. Figure 1.2 embodies this description of

the feedback system, which has become standard in the H** control community [6, 16-18,

23]. G represents the nominal plant model, which includes the process to be controlled along

with any sensors and actuators. G is a known finite-dimensional, linear, time-invariant

(FDLTI) operator, e.g. a transfer function matrix. The compensator transfer function matrix

to be designed is K. L is also a FDLTI operator representing the perturbation on G due to the

uncertain plant dynamics; when L = 0, we only deal with the nominal plant. The vector time
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signals in Figure 1.2 are def'med as follows.

l

e'

u

Y

V t

Z'

Exogenous inputs (commands, disturbances, sensor errors)

Errors, to be made small

Controls

Measurements

Output from perturbation operator

Input to perturbation operator

The synthesis problem is to specify K to

(1) achieve closed-loop stability

(2) satisfy performance specifications

(3) provide stability and performance robustness with respect to all possible L

exogenous
inputs

controls

Physical
Plant

responses

measurements

Compensator

Figure 1.1 The generic feedback problem.
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d !

L

G

u y

K

Figure 1.2 A model of the feedback problem.

1.2.2 Nominal Stability

The first requirement for a compensator is that it stabilize the nominal closed-loop

system (i.e. for L = 0). Stability implies that bounded inputs produce bounded outputs; that

is, internal stability must be achieved. Therefore, K must place all closed-loop poles in the

left half plane. In order to meet this requirement, it is evident that stabilizable and detectable

design models are needed.

1.2.3 Nominal Performance

Performance is a very broad concept, open to a wide variety of definitions and

interpretations. In the context of this thesis and Figure 1.2, performance will roughly mean
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thatinputsd'in a specifiedclassshouldproduce "small"responsese'thataremembers of a

given set.The inputclassof interestincludesallpossibleL2 functionswith a bounded norm.

This isacommon and physicallyrelevantassumption on theexogenous inputsignals.

Bounded L2 functionscorrespond tosignalsof bounded energy. The sarncassumption is

made on the responses e'.

Weighting functionson theinputand outputsignalsareused to scalethenorm bounds

tounityand reflectthevarying spatialand frequencycontentof theinputsignalsand

performance specifications.Define new inputand outputsignalsd and c (Figure1.3).

d=Wdd' (I.I)

e = W ee' (1.2)

W d and W e are stable, minimum phase transfer function matrices of appropriate dimension.

The weighting functions on each vector provide an extra degree of freedom in the design

process, and allow the set of input signals d to be defined independently of the set of

desirable responses e.

e t e

W,,

Figure 1.3 Use of weighting functions to define input and output signals.
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The frequency response of the largest singular value of a typical input signal (NVd'I) or

performance (We) weighting function is shown in Figure 1.4. The magnitude is selected by

the designer to be large at low frequencies where the references and disturbances are expected

to have their energy concentrated. The frequency response declines and levels off at high

frequencies where insensitivity to sensor noise and stability-robusmess, rather than

command-following or disturbance-rejection, are the prime consideration. The nominal

performance objective may now be stated.

Given the plant model G in Figure 1.2 and the weighting functions W d and W e

(L is assumed to be identically zero), find the internally stabilizing compensator

K such that

e¢ BL 2 forall de BL 2

where BI__ is the set of bounded I..2 functions.

BL2= { v I I]v[122=fllv(t) l] 2dt < 1 } (1.3)
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Frequency response of a typi_d performance weighting function.

1.2.4 Uncertainty and Robustness

The operator L in Figure 1.2 arises from the uncertain dynamics associated with the

nominal plant model G. L is a result of two generic classes of modeling uncertainty:

parameter variations (real) and norm-bounded perturbations (complex). Parameter variations

arise from imprecisely known coefficients in the lumped differential equation models of

physical systems. Norm-bounded perturbations, also called unstructured uncertainty, are the

result of unmodeled dynamics (high-frequency stable poles, far-away minimum and

nonminimum phase zeros) and other neglected phenomena (small delays, nonlinear effects,

etc.).
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We will only be concerned with norm-bounded uncertainty in the sequel. This

restriction is not unreasonable, at the present time, because the structured singular value

analysis of systems with real parameter variations (the real-Ix problem) is relatively crude

[16]. It would be fruitless to attempt the formulation of a synthesis methodology without

having the rigorous analysis tools as a foundation. In addition, real parameter variations may

be handled by "covering" the real perturbation with a complex uncertainty block. Of course,

this introduces some conservatism into the design process; however, limited practical

experience suggests this procedure is only slightly conservative [21].

When the feedback problem is posed as in Figure 1.2, multiple unstructured uncertainty

blocks present at various locations in the feedback loop model give rise to a perturbation L

with a block diagonal structure [4].

L - diag(LI, I._,...,Ln) (1.4)

As with the input and output signals, weighting functions on the individual perturbations are

essential in capturing the spatial and frequency charateristics of Li. Define the weighted

perturbation vectors v i and z i (Figure 1.5), for i = 1 to n.

v i = Wv i v i' (1.5)

z i = Wzi z i' (1.6)

Describe the perturbation L in Eqn. (1.4) and Figure 1.2 in terms of a norm-bounded

uncertainty A and the above weighting functions.

L i = W,q-lAiWzi (1.7)
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where

Wvi and Wzi are stable, minimum phase FDLTI weighting transfer function matrices

Ai_ P

P-- [ AI A stable, Ilall.< 1 }

IIAII..=supo[Atjc0)]

The frequency response of the largest singular value of a typical uncertainty weighting

function (Wvi-1 or Wzi) is shown in Figure 1.6. This typical shape reflects the fact that

modeling errors are generally small at low frequencies, where a good understanding of the

physical phenomenon exists, and rise as neglected, high-frequency effects become

significant.

The robustness requirement states that the compensator K must satisfy the stability and

performance objectives in the presence of all possible perturbations. That is, for all L under

consideration

(1) Stability-Robusmess: The closed-loop transfer function matrix from d to e must

have all its poles in the left half plane.

(2) Performance-Robustness: e _ BI., 2 for all d _ BL 2

Chapter 3 contains the analysis tests that ensure (1) and (2) are satisfied.
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Figure 1.5 Uncertainty weighting functions.
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Figure 1.6 Frequency response of a typical uncertainty weighting function.
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1.2.5 Formal Design Framework

The uncertainty and performance weighting functions defined in the previous sections

can be incorporated into the plant model G to yield the block diagram in Figure 1.7. The

FDLTI operator P will be referred to as the design plant model. P consists of the control

plant model G and the uncertainty and performance weighting functions Wv, Wz, Wa, and

W e . Note that the design objectives have been (partially) reflected in these weighting

functions, and hence in P. So the simplicity of the formal design framework is somewhat

misleading, because the frequency-domain stability/performance tradeoffs are assumed fixed.

A is a unity norm-bounded, diagonal perturbation and is a member of the set A, where

A={ A I A=diag(A 1,A 2.... ,An),A i ¢ P}

P={ A I A stable, IIAII**< 1 }

(1.8)

A

V Z

d p e

u y

K

Figure 1.7 General framework for feedback design problem.
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Any linear interconnection of components, inputs, outputs, and perturbations may be

put into the structure of Figure 1.7. The block diagram contains the following relationships,

where the Pij are transfer function matrices of suitable dimensions.

PI1

= P21

P3,

P12 P13

P22P23 (1.9)

u = Ky (1.10)

vfAz (1.11)

The compensator K in Figure 1.7 can be incorporated with the plant P via a lower linear

fractional transformation to yield the dosed-loop transfer function matrix S (Figure 1.8), i.e.

S = FI(P,K).

SII S12]
S - S21 S22j (1.12)

(1.13)
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A

V Z

d S e

Figure 1.8 Block diagram for closed-loop system.

We now have a formal framework in which to handle the feedback control problem.

The concept of performance has been rigorously defined, and the type of modeling

uncertainty to be encountered is known. In the sequel a methodology is developed to find a

compensator K that satisfies all the objectives discussed in this section.

1.2.6 A Standard Feedback Problem

At this point, it is a worthwhile exercise to interpret the formal feedback problem of the

previous section (Figure 1.7) in terms of the more conventional feedback structure in Figure

1.9. We will see that the standard problem in Figure 1.9 is simply a special case of the more

general framework presented in Section 1.2.5.

The plant G and the compensator K are FDLTI systems such that the closed-loop

system is nominally stable. For the sake of clarity, the only exogenous input to be

considered is the reference command d. Other exogenous inputs, such as disturbances and

sensor noises, are handled in a similar manner. The unweighted tracking error is denoted by
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e' (and y), the control signal generated by the compensator is u, and y' is the plant output.

This notation was adopted so as to maintain consistency with that in Figure 1.7. It follows

from the block diagram in Figure 1.9 that

e' - (I + GK) -1 d (1.14)

!

d K G Y

Figure 1.9 Standard feedback configuration.

Define the standard (output) sensitivity transfer function matrix R.

R - (I + GK)-I (1.15)

It is clear from Eqn. (1.14) that the tracking error will be small if R is small in the frequency

range where the commands have their energy (typically low frequencies). A typical

performance specification defined with respect to the sensitivity transfer function matrix R is

[ R(j¢0) ] <[We -1 (j¢0) [ V¢O (1.16)

where w e (s) is a single-input, single-output (SlSO), proper transfer function that is stable
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and minimum phase. I we-1 (jt_) I serves to bound the magnitude of the sensitivity over

frequency. The Bode plot of a typical sensitivity bounding function, I w e fjc0) I, is shown in

Figure 1.4. The magnitude is large (i.e. small sensitivity) in the low frequency range, where

good command-following is desired.

In any realistic problem, there is some modeling error associated with the plant G in

Figure 1.9. Describe this error with a multiplicative, norm-bounded (unstructured)

uncertainty at the plant input. That is, the perturbed plant G has the representation

N

G = G[I + L] (1.17)

where o [ L0co) ] < I w z (jo_) I Vm (1.18)

The SISO transfer function w z (s) is also stable and minimum phase, and bounds the

magnitude of the perturbation over frequency. Refer to Figure 1.6 for the magnitude Bode

plot of a typical uncertainty bounding function. The modeling error is generally small at low

frequencies, and increases with 0_.

The compensator K must maintain stability in the presence of L. That is, the closed-

loop system in Figure 1.9 must have all its poles in the left half plane when G is replaced by

G, for all G described by Eqns. (1.17) and (1.18). The stability-robustness condition for a

multiplicative perturbation at the plant input is wen-known [3]. Define the standard (input)

complementary sensitivity

C = KG(I +KG) -I (1.19)

N

Then, the closed-loop system is stable for all possible G if

[COco) ] <]wz q (jco)l Vc_ (1.20)
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However, nominal performance (Eqn. 1.16) and stability-robustness (Eqn. 1.20) does

not constitute a complete set of requirements for the closed-loop system. A certain level of

performance must be guaranteed for all possible L, as well. Let the perturbed (output)

sensitivity R = (I + GK)q. Then, the robust performance problem is to find a K such that

_ [ R.(jo) ] < I w£1 (jo) I Vto (1.21)

N

for all G described by Eqns. (1.17) and (1.18). Compare the specifications in (1.16) and

(1.21).

Structured singular value analysis and the formal design framework in Section 1.2.5

were developed to handle the robust performance problem. We will now take the standard

problem just described and put it into the formal framework. The weighting functions in

Eqns. (1.1) and (1.2) can be defined directly from the statement of the conventional problem.

Given the block diagram in Figure 1.9 and the performance specification in (1.21),

W a = I (1.22)

We = w,I (1.23)

where I is the identity matrix of appropriate dimension. From Eqn. (1.7) and condition

(1.18), the uncertainty weights in (1.5) and (1.6) are defined.

(1.24)

(1.25)

Then, L = AW z (1.26)
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where A is a stable operator with IIA II..< 1. L obviously satisfies the inequality in (1.18).

The modeling uncertainty at the plant input and the weighting functions can be

incorporated into the block diagram shown in Figure 1.9. The complete block diagram (with

the uncertainty and weights) has been manipulated in Figure 1.10 to conform to the formal

design framework (Figure 1.7). The design plant model P can now be defined in terms of

the specific structure shown in Figure 1.10.

0 0
We

p- -WG W e -WG (1.27)

-G I -

The closed-loop transfer function S = FI(P, K) is

S .=_

-WzKG(I+KG) 1

-WeG(I+KG) "1

WzK(I+GK) -f

We(I+GK) -1

(1.28)

Note that $11 is the product of the uncertainty weight and the complementary

sensitivity, and $22 is the weighted sensitivity. We will see in Chapter 3 that the nominal

performance and stability-robusmess analysis of S produces precisely the same constraints as

in Eqns. (1.16) and (1.20), respectively. The performance-robustness requirement in Eqn.

(1.21) is equivalent to a frequency-domain inequality involving the structured singular value

of S (see Section 3.4.2).

It is hoped that this section has given the reader some insight into the formal synthesis

problem. The performance and uncertainty weighting functions have been defined in terms
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of the classical notions of sensitivity reduction and norm-bounded, multiplicative error.

Finally, the objectives of the formal synthesis problem (i.e. stability and performance

robustness) have been related to conventional feedback requirements.

Note that the numerical examples in Chapter 5 will be solved in terms of the standard

configuration in Figure 1.9.

V
A

d We e
G

u y

K

Figure 1.10 Standard feedback configuration put into the formal design framework;

compare with Figures 1.7 and 1.9.
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1.3 Previous Work and Related Literature

1.3.1 Background Theory

Several aspects of modem feedback theory provide the foundation for this research.

The general framework for considering the problem of robust synthesis is well-established

[5, 6, 16, 21, 24].

For the analysis of feedback system robustness we rely on the structured singular value

It. This analysis tool, developed by Doyle [5], is a generalization of the ordinary singular

value that provides a necessary and sufficient condition for robust stability and performance.

It removes the conservatism associated with singular value analysis of systems containing

structured uncertainty. A frequency-domain performance criterion in terms of It is central to

the CRM.

The synthesis methodology developed in this thesis relies on results from several other

areas of systems and control theory. The foundation of the causality recovery approach is the

pararnetefization of all stabilizing compensators conceived by Youla, Jabr, and Bongiomo

[25], and refined by Desoer, Liu, Mm'ray, and Saeks [26]. This formula characterizes all

stabilizing compensators in terms of a causal, stable operator Q. The resulting closed-loop

map is internally stable and an affine function of Q. As we shall see in Chapter 4, this

structure plays a key role in the design process.

We also rely heavily on the I-I**theory pioneered by Zames [27-30] and formalized by

Francis and Doyle [17, 18]. The g-synthesis method (DK iteration), invented by Doyle [6],

figures prominently in the CRM, as well. As we shall see in the sequel, I-I.. and

(nonconverged) DK iteration compensators provide good starting designs for the CRM.

The theory of Hankel operators [17, 31, 32] is an integral part of the I-L. feedback

paradigrn, and it turns out to be equally crucial to the CRM approach. The norm ofa Hankel
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operator measures the distance of the operator from the 14-**space or, equivalently, it is a

measure of noncausality. Minimizing a I-Iankel norm over some feasible set is the key

concept in the Causality Recovery Methodology. Thus, optimization [33] is also a critical

part of the design process.

1.3.2 Approaches to Robust Linear Control

The idea of designing feedback systems to be robust with respect to modeling

uncertainties is certainly not new [2]. In fact, various techniques to deal with uncertainty

have been proposed throughout the years. Horowitz [34, 35] developed the so-called

Horowitz templates that represent, at a particular frequency, the gain and phase changes

associated with parameter variations as a region on a Nichols chart. A loop transfer function

is derived via classical, graphical techniques from the templates. This procedure is supposed

to ensure closed-loop stability and a certain amount of performance over the possible range of

parameters. While it is claimed to be a general multivariable method, the procedure is

extremely tedious for more than a few frequency points and a great deal of judgment is

required on the part of the designer.

Sideris and Safonov [36] approach the problem of structured uncertainty by examining

a plant template in the complex plane. A series of transformations at each frequency is

performed that maps the irregularly shaped region in the complex plane onto the unit disk.

The directional properties of the uncertainty are eliminated, and the transformed problem is

essentially a design with unstructured uncertainty. Nevanlinna-Pick interpolation is then

used to find a robust compensator such that it is a solution to the original problem.

Khargonekar and Tannenbaum address the problem of robust stabilization of SISO

systems in the presence of parameter uncertainty [37]. The authors do not deal with

performance issues directly and simultaneous variations in the poles and zeros cannot be
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considered within the present framework. Robust stabilization has been investigated by a

number of other researchers as well [32, 38, 39]. In fact, Vidyasagar and Kimura [39] have

derived necessary and sufficient conditions for a particular compensator to achieve robust

stabilization, and necessary and sufficient conditions for the existence of such a controller.

However, performance guarantees in the presence of uncertainty are not examined.

Adaptive control has been proposed as a solution to the robust control problem. The

concept of identifying the uncertain plant on-line and adjusting the controller accordingly is

certainly appealing fi'om an intellectual viewpoint. Unfortunately, it is the plant unst_cmred

uncertainty that may cause the adaptive algorithm to become unstable [7].

1.3.3 bt-Synthesis

The g-synthesis technique developed by Doyle [6, 16] appears to be (at least for the

present time) the most promising approach to the problem of formal robust synthesis. In

fact, it has actually been successfully applied to some realistic problems [21]. This

procedure, referred to as DK iteration, exploits the fact that the structured singular value is a

scaled version of the singular value with a block structm_ scaling matrix. DK iteration

involves the solving of a sequence of scaled I-I**feedback problems. Hence, its

computational complexity is directly tied to the ease with which I-I**synthesis problems can

be solved.

The aim is to find a stabilizing compensator K and a scaling transfer function D such

that the infinity norm of the scaled closed-loop map is less than unity (i.e. the condition for

robust performance is satisfied). One way to accomplish this is to alternately minimize the

scaled closed-loop with respect to K or D while holding the other one fixed. For fixed

scaling D, an I-I**control problem results which appears to be solved easily by very recent

techniques [22]; see also Sections 1.1.3 and 4.2.1. When the compensator K is fixed, the
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minimization with respect to D is a convex optimization problem at each frequency. The

resulting D is approximated by a stable, stably invertible, rational transfer function and the

process is repeated until it converges. Unfortunately, this iterative scheme is not jointly

convex in K and D and, therefore, is not guaranteed to converge to the globally optimal K

and D.

1.4 Introduction to the Causality Recovery Methodology

With the invention of the parameterization of all stabilizing compensators [25, 26],

FDLTI feedback design may be interpreted as a search over all stable and causal (i.e. I-L.)

functions to satisfy some performance specification. The performance criterion of interest to

the CRM is the requirement for robust stability and performance. This leads to a frequency-

domain inequality on the closed-loop transfer function in terms of the structured singular

value. The aim of the CRM is to find a Q e I-I**that meets the inequality constraint.

We will show that the function that optimizes the robustness of the feedback system

may be easily computed using only complex matrix arithmetic. The caveat is that this

function is not causal (i.e. not in I-L.), in general. The aim of the CRM is to find a stable,

causal transfer function matrix that will closely approximate the robustness characteristics of

the optimal solution. This process may be thought of as recovering the causality of the

optimal solution while retaining its beneficial frequency-domain properties; hence, the

methodology's name.

The Causality Recovery Methodology

Step 0 (A priori Information)

The CRM requires a finite-dimensional realization of the design plant P in Figure 1.7.

Recall that P includes a model of the plant to be controlled, as well as any performance and
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uncertainty weighting functions.

Step 1 (Nominal Compensator Design)

Compute a nominal compensator Kno m using any existing synthesis methodology. The

resulting closed-loop system Snom provides a lower bound on system performance. That is,

the CRM will guarantee a closed-loop system whose robustness is no worse than, and

hopefully superior to, that of the nominal design.

Step 2 (Parameterization of all Stabilizing Compensators)

Compute the parameterization of all stabilizing compensators in terms of a free transfer

function matrix parameter Q ¢ H** using the plant P and the nominal compensator Kno m-

The resulting closed-loop transfer function matrix S is affine in Q.

where T11 =Snom"

S = Tll + T12QT21

The CRM will use Q to fine-tune the nominal design and improve robustness.

Step 3 (Optimal Noncausal Design)

At this point the restriction that Q lie in I-I**is removed. This allows the designer to

examine the robust synthesis problem by finding a complex matrix at each and every

frequency. The complex matrix that maximizes the robustness margin, Q*, is computed at

each frequency via a convex optimization program. In general, Q* corresponds to a

noncausal system and will serve as the starting point in the causality recovery process (Step

4). The robustness of the noncausal closed-loop is, of course, an upper bound on the

robustness we can expect from a Q ¢ I-I**.
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Step 4 (Causality Recovery)

A feasible set of Q's in the space of complex matrices satisfying the robustness

specification is constructed at each frequency. Causality recovery refers to the process of

searching over the feasible set, starting at Q*, for the Q or Q's that are stable and causal. The

search for such an I4_**function in the feasible set is posed as an optimization problem with

the objective function being the Hankel norm, which acts as the measure of noncausality.

The optimization is an infinite-dimensional convex program whose aim is to minimize the

Hankel norm over the feasible set. If the problem is well-posed (i.e. the desired performance

is consistent with the uncertainty), the Hankel norm will be reduced to zero and the resulting

argument is a Q in H**. This Q produces a stable closed-loop system that is at least as robust

as the nominal design.

Step 5 (Construction of Compensator)

The compensator is computed as a function of the transfer function matrix Q ¢ H**, the

nominal compensator Knom, and the plant P. The closed-loop transfer function S can also be

computed directly.

The above procedure is meant to be a methodology for the (off-line) synthesis of robust

feedback systems. Hence, the sequel will focus on the development of computable

algorithms to implement the CRM. Unfortunately, the computational burden will prove to be

quite severe.
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CHAPTER2. MATHEMATICAL BACKGROUND

2.1 The Structured Singular Value

2.1.1 Definition and Description

The structured singular value IX,developed by Doyle in [5], is a function of a complex

matrix and plays a key role in the analysis of feedback systems with structured uncertainty.

In this section we will describe the mathematical properties and characteristics of IXand

discuss various approximations used in its computation. The Ix-analysis of feedback systems

is covered in section 3.4.

The function Ix is essentially a measure of the distance to singularity of a complex

matrix with respect to a set of perturbations of fixed structure. In the context of feedback

systems, the structured singular value will be used to analyze the stability of the closed-loop

system in Figure 2.1. The complex matrix M represents the transfer function (at a specific

frequency) from the perturbation outputs to the perturbation inputs. A is a complex matrix

perturbation. Stability analysis simply ensures that I-MA remains non-singular at all

frequencies and for all A under consideration.

The positive real-valued function Ix satisfies the following condition.

m

det(I-MA),0 VA_A, o(A)<T iff TIX(M)<I (2.1)

A is the set of possible perturbations A of given structure. The function Ix of M depends on

that structure; however, this dependency is not represented explicitly for notational

convenience.
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If I.t(M)¢0, (i.e. 3A _ A such that det ( I - MA ) = 0) then

D -1

_t(M)= [rain { o(A)J det(I-MA)=0} ]
AEA

(2.2)

A

M

Figure 2.1 Feedback diagram for interpretation of the structured singular value.

Remark 1 The structured singular value is the appropriate tool for analyzing the stability

and performance robustness of feedback systems. Realistic modeling uncertainty, as well as

closed-loop performance specifications, results in a perturbation A of known (block

diagonal) structure.

Remark 2 Standard singular value techniques may be used to derive a sufficient condition

for the stability of the system in Figure 2.1. This analysis has a serious limitation in that the

structure of A is completely ignored (i.e. A is assumed to be a full matrix perturbation) and

the test may be arbitrarily conservative.
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Remark 3 While _t results in an "if and only if" robustness condition, a price is paid for

such a nonconservative test. The structta_ singular value is essentially a definition, i.e.

search over all possible perturbations of given structure and find the smallest one (in the

singular value sense) that makes I-MA singular. Unfortunately, this definition of ix does not

satisfy the mathematical definition of a norm. The rich mathematical structure and results

which accompany a norm are not available, and this greatly complicates the feedback

synthesis problem.

Remark 4 In the sequel we will restrict the problem to the case where A consists of block

diagonal, complex matrices. This represents a very significant class of feedback problems.

Such perturbations arise when there are mul@le norm-bounded (unstructured) uncertainty

blocks located at various points in the feedback loop. Unstructured perturbations typically

result from unmodeled dynamics, i.e. neglected high-frequency poles and zeros, delays, and

nonlinear effects, and worst-case performance specifications. Although real parameter

variations are not handled directly, they may be incorporated into this structure in a

conservative manner by treating the variations as complex perturbations.

Remark 5 Although equation 2.2 is a suitable definition for the structured singular value, it

is not useful for actually computing _t. The implied optimization is nonconvex and may have

multiple local minima. Techniques for the calculation of _t are discussed in the next section.

2.1.2 Approximation and Computation

This section presents approximations to _t that lead to reasonable methods for

computation in the case of block diagonal, complex perturbations. A more complete

treatment can be found in [24]. Assume that A is a set of matrices such that
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CNxN D A D {MIXE C } (2.3)

The two limiting cases provide some insight into the function Ix as a generalization of the

notions of spectral radius and spectral norm.

A = { M IZ,¢ C } =_ Ix(M) = p(M) = I_(M)I

A = C Nx N ==_ Ix(M) = -o(M)

(2.4)

Bounds on Ix in the general case can be obtained from the formulas in (2.4) and from

the special properties of A. Suppose that U and D are sets such that for any A ¢ A

U e U =_ o(UA) = o(A)

D eD =_ D-IAD=A

(2.5)

Then, from the definition of Ix it follows that

u e U =_ tt(MU) = Ix(M)

D ¢ D :o _t(DMD -I)= Ix(M)

(2.6)

Based on (2.4) through (2.6), it is shown in [5] that

sup p(MU) _< Ix(M) _< inf o(DMD _)

UeU DeD

(2.7)
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For thecase of nonrepeated, complex blocks, we have the following sets.

A = { diag(A1,A 2..... An) I Aj _ C mjx mj }

O = { diag(Ul,O 2, ... ,On) I Uj*U j = I }

D = { diag(dlX,d2 I, ... ,c_I)I dj _ R+ }

The bounds in (2.7) provide a means to compute _t, and the key theorems in [5] reveal

when these bounds are useful. The lower bound in (2.7) is actually an equality for all M and

A. However, the optimization problem posed by the lower bound is not convex. Therefore,

it may have multiple local maxima and is not very useful as a computational algorithm. The

upper bound is an equality in the case of three or fewer blocks or if M is real. In addition,

the upper bound optimization problem is convex in In(D) and has only global minima [For

proof see 18]. This fact makes the upper bound a useful computational scheme, and

experience has shown that this bound is reasonably tight even when n > 3 [6].

For the two block case (i.e. n = 2), Doyle has developed two reasonable

approximations to the equation

_(M) = inf _(DMD 4)
DeD

(2.8)

[ lMll M12

In this case, M = 1_1 M22
and D [::1Oeo roximationtot oir  umo

d

¢I(M12)

(2.9)



Chapter2 Page51

11M21IIFd = IIM12 IIF (2.10)

If the matrix M is 2x2 (not block), then these approximations are exact. If M is larger (i.e.

block 2x2), then the above equations provide a reasonable approximation to the infimum and

are a good starting point in the convex optimization in Eqn. (2.8).

Remark The structured singular value cannot be computed directly. The most effective

method for computing an approximation to Ix is the convex optimization problem associated

with the upper bound in Eqn. (2.5). Therefore in the sequel when we refer to Ix, we actually

are referring to the quantity that may be computed, i.e. the upper bound. This introduces an

unavoidable, but small, degree of conservatism into the design process.

2.2 l-lankd Operators

2.2.1 Definition and Description

The theory of Hankel operators plays a central role in the modem, functional analysis

based control methodologies (i.e. H 2, H**) [6, 16-20, 23, 31]. The Causality Recovery

Methodology also depends very heavily on this theory; however, in a fundamentally different

way. The H2 and H** methodologies reduce the control design problem to a general distance

problem [19]. That is, the best I-I**approximation to an L** function must be found. The

goal of the CRM is to find an H** function in a given set of L** functions that satisfy some

performance specification. References [17, 18] are thorough and lucid treatments of the

subject of H** control design and we will rely primarily on these accounts for the discussion
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of Hankel operators presented here.

In order to define the Hankel operator we fLrSt must introduce the Lament operator.

Definition 2.1 For F ¢ L** the Laurent operator with symbol F, denoted A F, is a

mapping from I.,2 to L 2 via

AFg := Fg (2.11)

The Laurent operator with symbol F represents multiplication by F. A F is linear and bounded

and II A F II = II F I1... A related operator is A F I H 2, the restriction of A F to H 2, which maps

H 2 to L2. The Hankel operator can now be defined in terms of the restriction of A F to H 2.

Definition 2.2

mapping from H 2 to H2-L via

Fvg := HAF I H2 g

where FI is the orthogonal projection from L2 to H2 t.

For F _ L** the Hankel operator with symbol F, denoted F F, is a

(2.12)

F v may be thought of as taking a transfer function in H 2 (i.e. strictly proper and stable)

and mapping it into an antistable transfer function through the action of the symbol F. The

Hankel operator has a time-domain interpretation as well. Assume F(s) is analytic in a strip

containing the imaginary axis. This is always the case if F(s) is rational. Let f(t) denote the

inverse bilateral Laplace transform of F(s) with this strip being the region of convergence.

The linear system with impulse response f(t) is stable, but noncausal in general. That is, the

f(t) is two-sided. The time-domain operator maps a function u in L2[0,**) into a function y in

L2(-**,O] according to the convolution equation



Chapter 2 Page 53

y(t) - f f(t - x) u(x) d'_ , t < 0 (2.13)

0

2.2.2 The Hankel Norm and Nehari's Theorem

The norm of a Hankel operator will be computed in this section and the significance of

the norm discussed. It will be assumed throughout that the symbol F is finite-dimensional

and rational. This allows the norm of the operator F F to be computed by standard state-space

methods.

Let F be a matrix function in RL**. There is a unique factorization

F - F 1 + F2 (2.14)

where F 1 is strictly proper and analytic in Re s < 0 and F2 is proper and analytic in Re s > 0,

i.e. F 2 e RH**. This factorization is accomplished with a state-space realization of F. The

Schur decomposition with eigenvalue ordering and the solution to a Sylvester equation are

used to compute the appropriate similarity transformation [20] to arrive at the factorization in

Eqn. (2.14).

Introduce a minimal realization of F 1 = [A,B,C,0]. The controllability and

observability gramians are defined as follows:

e- dtL = e- At BB T ATt (2.15)
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L o = f e" Art cTc e" A t dt

0

(2.16)

It is well known that L e and L o are the unique solutions of the Lyapunov equations

ALe + LEA'= BB'

A'L o + LoA = C'C

(2.17)

(2.18)

The eigenvalues of LcL o are real and nonnegative, and the norm of the Hankel operator is

readily computed by

IIrFII =  X(LL) (2.19)

One of the most significant results in the theory of Hankel operators is Nehari's

theorem. This theorem provides the theoretical foundation for the causality recovery process.

Theorem 2.1 [40] There exists a closest X _ I-L. to a given F _ L**, and

II F - X I1.. = II F F II

This theorem provides a measure of the distance of an L** function F from the space

H**. In frequency-domain terms, IIF F II is the distance from an unstable transfer function to

the closest stable one. In fact, the Hankel norm is the radius of the smallest tube with center

F in complex matrix space versus frequency that contains an H** function. Nehari's theorem

interpretedin the time-domain states that the distance fi'om the noncausal system with impulse



Chapter2 Page55

responsef(t) to thenearestcausalsystemis givenby thenormof theHankeloperator.

Remark The fact that the Hankel norm serves as a measure of noncausality will be

exploited by the Causality Recovery Methodology. The heart of the CRM is an optimization

problem to find a causal, stable (I'L.) transfer function. This is accomplished by minimizing

the II F F II over some feasible set.

2.2.3 Best Approximation

The "best approximation" problem is presented and discussed in this section. We see

that the Hankel operator plays a key role. The problem is formally stated as follows.

Let F be a function in L**. Find the function X in I4-**that minimizes IIF - X I1.,.

Nehari first solved this problem for the case of scalar discrete systems [40]. Glover

considers the special case where the function to be approximated is real-rational, i.e. F

RL**, and has developed an efficient, state-space solution to the problem [31]. Glover's

algorithm is reviewed here following the treatment in [20].

Consider the best approximation problem for the real-rational case. Then for F _ RL**,

the solution X is in RI-I** [For proof see 23, 31].

Theorem 22 If F _ RL**, then there exists a best approximation Xop t in RH**.
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Theorem 2 3 Let Xop t bc the best approximation to mxp matrix function F, then

(1) ifm = 1 orp = 1, Xopt is unique and (F - Xopt) is aU-pass.

(2) if m _ 1 and p ¢ 1, then Xop t is not unique and

_(F - Xopt)(it0) = II F F II V (o _ R.

Assume, without loss of generality, that F is strictly proper, anti-stable, and square. If

F is not anti-stable, it is factored as in F_.qn. (2.14) and the stable part is absorbed into X.

Rows or columns of zeros are added if F is not square. Introduce a minimal realization F =

[A, B, C, 0]. Construct Xopt in RI-I** as follows.

Best Al_roximation

Step I

Compute a balanced realization of F [41]. This is simply a similarity transformation

of the original realization such that the controllability and observability gramians are diagonal

and equal. Let [A, B, C, 0] denote the balanced realization of F. The gramians are

1
where o > IIZII, and r is the multiplicity of o. Partition A, B, and C according to the

structure of L. Then,

= , and C = [C1 122].

A LA'21 , B= B2
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Step 2

Choose 1) such that

I)BI T + oC 1 = 0

1)I) T =¢_21

Step3

Compute

fi = -(o2I - Y'.2)-I(Y.B 2 + o'C2TI))

A = (-A22 + B213T) T

c_= car + 15B2T

Step 4

Xop,= iX, §, 6, 6].

2.3 Convex OpCnnization

2.3.1 Definitions and Key Results

The process of optimization has become an integral part of almost all design algorithms,

and the CRM is no exception. An optimization problem consists of two dements: the

objective function and the feasible set. The goal is to minimize the objective function over the

dements contained in the feasible set. The property of convexity eliminates the possibility of

having local minima.

Definition 2.8 A set C is convex if, for all dements x 1 and x 2 in C and every real 0

satisfying 0 < 0 < 1, we have 0x 1 + (1 - 0 )x2 in C.
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Definition 2.9 A real-valuedfunctiona/f defined on a convex subset C of a linear

vector space is said to be convex if f(0x I + (1 - 0 )x 2) < 0f(x 1) + (1 - 0 )f(x2).

Theorem 2.4 [33] Let f be a convex functional defined on a convex subset C of a normed

space. Let ot = { inf f(x) I x _ C }. Then

(1)

(2)

The subset X of C where f(x) = ct is convex.

If x 0 is a local minimum of f, then f(x0) = ot and, hence x0 is a global

minimum.

The above theorem establishes the importance of convexity of both the objective

function and of the feasible set in an optimization problem. A convex optimization problem

has only global minima and a simple gradient search algorithm that monotonically reduces the

objective function is guaranteed to find (or come arbitrarily close to) the infimum.

A simple, but important, result that will be needed in the sequel is contained in the

following theorem.

Theorem 2.5 II F F II is a convex functional of F.

Proof. Let F = 0F 1 + (1-0)F 2, 0 < 0 < 1.

By Nehari's Theorem, II 1"v 11= inf II 0F 1 + (1-0)F 2 - X I1...

Let X = 0X 1 + (1-0)X 2 and substitute. Then,

II F F II = inf II 0(F 1 - X_) + (1-0)(F 2 - X2) I1.,.

_< inf { II 0(F_ - X_) I1..+ II (1-0)(F 2 - Xz) I1., }

= inf II 0(F_ - X1) I1..+ inf II (1-0)(F 2 - X 9 I1..

= 011FF_ II + (1-0)11FF2 II
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Remark 1 Several steps of the CRM are posed as convex optimization problems. From

Theorem 2.4 convergence to the global minimum is guaranteed in each case.

Remark 2 A simple search technique that monotonically reduces the objective function

may be used to find the minimum of a convex optimization program. We will rely on the

modified pattern search algorithm of Hooke and Jeeves [42, 43] to solve the numerical

examples posed in Chapter 5. The pattern search is not a gradient algorithm because no

derivatives are computed; rather, a search along the coordinate axes in the optimization

parameter space is performed. This algorithm was chosen primarily for its simplicity and

ease of implementation, rather than its computational speed and efficiency.

2.3.2 Applications to Feedback System Design

The concept of convex optimization in feedback system design is hardly new. The

most recent application of optimization theory to feedback design is contained in [44]. Boyd,

et al develop a new computer-aided design method for linear, time-invariant controllers. The

technique is based on the parameterization of all stabilizing controllers in terms of the free

parameter Q _ H**. This compensator description leads to a closed-loop transfer function

which is affine in Q. Constraints on the closed-loop such as asymptotic tracking,

decoupling, limits on peak excursions of variables, step response limits, settling time, and

overshoot, as well as frequency-domain inequalities, define a convex program.

The problem is posed in discrete-time and Q is parameterized as a finite impulse

response (FIR) filter. Stability and causality of Q are easily handled with this FIR structure.

The framework is quite general, with the LQG and I-I**problems as special cases. The price

paid for such generality is increased computational burden due to the fact that the optimization

does not take advantage of any special properties of the control problem, beyond convexity.
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There is somewhat of a dual relationship between Boyd's CAD method and the CRM.

Causality recovery is posed in continuous-time and Q is essentially parameterized as a

frequency response. The frequency-domain performance specification defines a convex set

of feasible Q's in the space of complex matrices. In many cases (i.e. H 2 and H** ) the

feasible set is convex. The convex objective functional is the Hankel norm or measure of

noncausality. In the continuous-time case the problem is essentially infinite-dimensional due

to the frequency response parameterization of Q. We will see in Chapter 4 that the infinite-

dimensional convex program may be approximated by a finite-dimensional problem.

2.4 Conduding Remarks

This chapter has laid the mathematical foundation for the CRM. The structured singular

value of a complex matrix was def'med, and methods of computing an upper bound via a

convex optimization program were discussed. We will see in the next chapter how the

structured singular value is used for the analysis of feedback systems. A necessary and

sufficient frequency-domain condition for stability and performance robustness will be

derived.

A brief review of the theory of Hankel operators was presented. The Hankel norm was

computed using standard state-space methods, and an interpretation of the norm as a measure

of noncausality was given. Finally, convexity was shown to be an important property of an

optimization program. Chapter 4 combines the Hankel operator theory with the optimization

results to form the basis of the CRAM.
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CHAFFER 3. ANALYSIS: STABILITY, PERFORMANCE, AND ROBUSTNESS

3.1 Introdnction

In section 1.2 the synthesis problem was formalized in tenrts of the general block

diagram (Figure 1.7). The compensator objectives were stated as the following requirements

on the closed-loop system:

(1) Nominal Stability

(2) Nominal Performance

(3) Robustness

The analysis tests that determine if the above objectives have been met are the focus of this

chapter.

The compensator K in Figure 1.7 is assumed known for the purposes of analysis. It

can then be incorporated with the plant P via a lower linear fractional transformation to yield

the closed-loop operator S (Figure 3.1), i.e. S = FI(P,K ).

$11 $12]
= (3.1)

S $21 $22

where z = Sllv + $12d (3.2)

e - S21v + S22d
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A

V Z

d S e

Figure 3.1 Analysis block diagram.

3.2 Nominal Stability

The first requirement for any compensator K is that it stabilize the plant P for the

nominal case of A identically equal to 0. A standard test for nominal stability is the

multivariable Nyquist criterion. This test relies on Cauchy's integral theorem and the

Principle of the Argument to determine if any closed-loop poles are in the right half plane.

For a given K, we can immediately determine the stability of the closed-loop by plotting the

Nyquist diagram of the loop transfer function and examining the number of encirclements of

the critical point.

The parameterization of all internally stabilizing compensators, fast put forth by Youla,

et al [25], allows the issue of nominal stability to be easily handled. All stabilizing

compensators are described in terms of coprime factorizations of the plant P and a free

parameter (transfer function matrix) Q ¢ I-I**. This compensator structure results in an

internally stable closed-loop map S that is affine in the free parameter Q.
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S = Tll + T12 Q T21 (3.3)

where Tij is a function of the plant P and is in I-I**. The key results and theorems associated

with the Youla parameterization will be presented in the synthesis chapter (Section 4.3).

Remark The requirement of nominal stability is transformed to the constraint that Q be

any stable, causal transfer function matrix. The task of feedback synthesis boils down to

finding the appropriate Q e I-I**such that S meets stated performance objectives.

3.3 Nominal Perforn-amee

In section 1.2.3 performance was defined generally as unity norm-bounded l_,2 input

signals producing unity norm-bounded L 2 outputs. In this section we state the necessary and

sufficient analysis test that determines if the feedback system achieves the desired

performance. This is a nominal performance test because we do not take into account the

effect of the perturbation A.

I

Nominal Performance Theorem 3.1 [24]

e _ BL 2 for all d ¢ BL 2 if and only if

II $22 I1.. < 1

The above theorem demonstrates how II • I1.. norm arises naturally in feedback system

design when dealing with bounded energy signals. In fact there are a variety of other

assumptions on the input and output signals (i.e. bounded power) that lead to identical

performance analysis theorems [24]. Thus the II • I1.. norm will provide the appropriate

vehicle for performance determination in the sequel. While this norm does not capture all the
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featuresof bothtimeandfrequencydomainperformanceobjectives, the weighted, frequency

II • I1.. norm is arguably the best compromise. As we shall see in the following section, the

II • I1.. is critical when dealing with modeling uncertainty and robustness.

3.4 Robustness

In this section we analyze the robustness of a feedback system in the presence of

structured uncertainty. The closed-loop map S (Figure 3.1) is assumed to be stable and

satisfy the condition in the Nominal Performance Theorem 3.1.

3.4.1 Stability-Robustness

Modeling uncertainty in various components of a feedback system will give rise to a

block-diagonal perturbation A. The exact perturbation is unknown; however, as discussed in

Section 1.2.5 A will be a member of the set

A = { A I A = diag( A1,/_2, "", An) , Ai E P } (3.4)

P={ A I Astable, IIAIIo.<I } (3.5)

The following theorem states the necessary and sufficient condition for robust stability in the

presence of structured uncertainty. Stability robustness implies that the perturbed system has

no poles in the closed right half plane.

Robust Stability Theorem 3;2 [24]

The system in Figure 3.1 is stable for all A _ A if and only if

II Ix(S n) I1.. < 1
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Remark This theorem is a generalization of the familiar singular value robustness tests

[3]. The advantage of using Ix over o is derived from the exploitation of structural

information associated with A. This leads to a necessary and sufficient condition, as

opposed to the arbitrarily conservative singular value test which represents only a sufficient

condition. II Sn I1,, may be very large, but no structured perturbation leads to instability.

Thus, Ix is a necessary tool in dealing with systems with structured modeling error (i.e.

parameter variations and/or multiple norm-bounded perturbations). We will see in the next

section that even in the case of a single unstructured modeling uncertainty, Ix is essential in

dealing with the issue of robust performance in a nonconservative manner.

3.4.2 Performance-Robustness

To satisfy the requirement of robust performance the closed-loop transfer function from

disturbances d to errors e, Fu(S, A), must be small for allpossible A. The robust

performance specification is formally stated as

11Fu(S, A) 11.. <_ 1 (3.6)

for all A ¢ A. The upper linear fractional transformation F u forms the closed-loop system

from d to e in Figure 3.1.

This requirement may be interpreted as a stability condition on the perturbed system.

Let S = Fu(S, A). (3.7)
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Theorem 33 II S'II.._< 1 if and only if

N

(1) S is stable, and

(2) the system in Figure 3.2 is stable for all Ape P

where P is defined in (3.5)

Remark This is just a stability robustness theorem stated "in reverse", with respect to a

"performance perturbation" Ap.

e

Figure 3.2 The perturbed closed-loop system S with performance block Ap.

Theorem 3.3 is equivalent to a stability-robustness condition on an augmented system

(Figure 3.3), and the results of the previous section apply. Stability and performance

robustness are achieved simultaneously if and only if the feedback system is stable for all

perturbations with the (2x2) block-diagonal structure in Figure 3.3.
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Figure 3.3 Stability and performance robusmess viewed as a stability condition.

Robust Performance Theorem 3.4 [24]

Fu(S, A) is stable and II Fu(S, A) I1.. < 1 V A _ A if and only if

II I,t( S ) I1.. < 1

where p, is computed with respect to the augmented block structure

A={diag(A, Ap) I AEA}

Remark 1 The theorem demonstrates that simultaneous stability and performance

robustness is guaranteed by a necessary and sufficient stability condition. This leads

naturally to a block structured perturbation, regardless of the modeling uncertainty structure

A, which requires the use of the structured singular value. The result in the above theorem

guarantees stability and performance for a whole set of possible plants.
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Remark 2 The results of this section have a simple interpretation in a (SISO) setting.

Refer to the standard feedback problem described in Section 1.2.6. Assume that the number

of encirclements of the critical point (- 1,0) in the complex plane by the loop transfer function

g(,jo_)k(jo)) is consistent with nominal stability (i.e. the Nyquist criterion is satisfied).

Stability-robusmess requires that the number of encirclements of the critical point remains

constant in the presence of the multiplicative uncertainty (l+Awz). This is ensured if the

worst-case distance to the critical point of the perturbed plant is greater than zero for all

frequencies, i.e.

I 1 + g(jo))k(j¢o) I - I g(jo_)k(jcO)Wz(jO_) I > 0

Note that this condition is equivalent to that in Eqn. (1.20).

Performance (i.e. the magnitude of the sensitivity function R) may be interpreted in

terms of the distance to the critical point, as well. From Eqn. (1.15) it is clear that the

sensitivity is simply the reciprocal of the distance to the critical point. Performance-

robustness requires that the worst-case distance to the critical point at each frequency to be

larger than some positive value defined by the performance weighting function we(s ) , i.e.

] 1 + g(jo))k(jm) I - I g(jco)k(jcO)Wz(j_) [ > ] we(jo) ]

In fact, the structured singular value in the SISO case is simply a measure of the distance to

the critical point.

tt = Iwe(jo_)r(jco) I + Iwz(jco)e(jco)I

where r and c are the standard sensitivity and complementary sensitivity transfer functions,

respectively, defined in Section 1.2.6.

This discussion is shown graphically in Figure 3.4.
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Figure 3.4 Complex plane interpretation of performance-robustness in SISO case.

It will be convenient to have a quantitative measure of the robustness of a feedback

system.

Definition 3.1 The robustness margin p of an LTI feedback system S is defined with

respect to Figure 3.3 as

p(S) = [ II g( s ) II. ]-1

Remark The quantity p measures the simultaneous stability and performance robustness

of a system S. We will see in the sequel that the aim of the CRM is to increase p.
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3.5 Conduding Remarks

This chapter has laid the analysis foundation for dealing with structured uncertainty in

feedback systems. We have seen that this type of uncertainty always arises when

considering the problem of robust performance. The synthesis methodology developed in

the next chapter will rely on the analysis theorems presented here.

As we shall see in section 4.3, the parameterization of all stabilizing compensators

yields a closed-loop transfer function S that is guaranteed to be nominally stable and aff'me in

the free parameter Q.

S = Tll+T12QT21 (3.8)

where Tij are functions of P in I-I..

The Robust Performance Theorem imposes the constraint

IIIt( Tll+T12QT21 ) I1..< 1 (3.9)

From the properties of the structured singular value, the inequality in Eqn. (3.9) is satisfied if

II D( T11+T12QT21 )D -1 II.. < 1 (3.10)

for some diagonal scaling transfer function D.

The next chapter presents a methodology for finding a Q _ I-L. such that F_gln. (3.10) is

satisfied. This results in a nominally stable closed-loop system with robust stability and

performance.
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CHAPTER 4. SYNTHESIS: THE CAUSALITY RECOVERY METHODOLOGY

4.1 IntrtrhsSm

This chapter presents the Causality Recovery Methodology and the main results of the

thesis. The familiar block diagram in Figure 1.7 represents the general framework for

consideration of the feedback synthesis problem in the presence of modeling uncertainty.

The objective is to find a compensator K to

(1) achieve closed-loop stability

(2) yield some desired level of perfortnance

(3) provide robustness with respect to the modeling uncertainty A.

The nature (i.e. II A I1.. < 1) and structure of the perturbation A impose known

constraints on the lower feedback loop in Figure 1.7. Therefore, the synthesis process will

be discussed in terms of Figure 4.1. The disturbance vector d is a composite of the vectors v

and d from Figure 1.7. Similarly, the error vector e in Figure 4.1 consists of z and e from

Figure 1.7.

d
P

u y

e

K

Figure 4.1 Synthesis block diagram.
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Fromtheprevious chapter on analysis we know the three objectives arc satisfied if a

transfer function matrix Q exists such that

QE H. (4.1)

IIDSD -1 II. < T (4.2)

At each frequency, D is a real, diagonal scaling matrix (see Section 2.2.2). S, the closed-

loop transfer function from d to e (Figure 4.1), can bc expressed as an affine function of Q.

S = T 1l+T12QT21 (4.3)

Note that7 isjusta scalingfactorto ensurethe synthesisproblem has a solution.The CRM

will find the smallest y and a transfer function matrix Q that satisfies (4.1) and (4.2). The

compensator K in Figure 4.1 is then computed as a function of the Q parameter and the

coprimc factorization of P.

There is a simple prescription for satisfying the constraints in (4.1) and (4.2), and this

will be the starting point for the causality recovery procedure. Choose the most elementary

I-I= function Q = 0. This leads to a compensator that is strictly a function of some plant

factodzation (see Section 4.3), and the nominal closed-loop transfer function T1]. The term

"nominal" in this context refers to the fact that Q is identically zero.

Determine the robustness properties of T 11 by computing the upper bound on tt( TI: ).

This will result in a real, diagonal scaling matrix Dno m at each frequency, and a measure of

nominal performance Tam"

Dnom(CO) = arg inf o ( DT11(Jc0)D "1 ) (4.4)
DeD
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where D = { diag(dlI,d2I, ... ,dg) Idje R+ }

'Ynom -- ][ Dnom Tll Dnom "1 [[** (4.5)

The H** functionQ = 0 satisfiestheperformance specificationin (4.2)for7 = 7nora"

The particularbound _/nommay or may not representadequate stabilityand performance

robustnessof thefeedback system. In eithercase,the aim of the CRM isto improve the

closed-looprobustnessby exploitingtheextradegreeof freedom availableinQ. The CILM

may be thoughtof as an algorithmto "free-tune"thenominal designTll by adjustingthe

frequencyresponseof thefreeparameterQ. In theremainder of thischapteraprocedure

willbc developed toguaranteethe findingof a Q • I'L.such thattherobustnessmargin p of

theresultingclosed-loopsystem isgreaterthanor equal top (Tll),i.e.

II Dnom(Tll + T12QT21)Dnom -1 I1.. < II DnomT11Dnom -1 I1.. (4.6)

The implicationisclear.Start with a "good" nominal design T 11,and the CRM will

produce anotherclosed-loopsystem whose performance isatleastas good as thenominal.

As wc shallsee,thepriceforsuch improvement isincreasedcompensator complexity.

Remark The scaling Dno m is computed as a function of T 11 (see Eqn. 4.4), and does not

change throughout the CRaM process. As we shall see, this greatly simplifies the problem

and leads to a convex program in Q. However, we are now no longer trying to optimize the

structured singular value; the infinity norm of the scaled closed-loop system will be

minimized (for the fixed scaling Dnom). Since the scaled singular value serves as an upper

bound on It, some conservatism is introduced into the design.

Once a new compensator has been computed by the CRM, T 11 may be redefined to
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incorporatethisnew design. The scaling Dnom is recomputed, and the causality recovery

process repeated. This is just a different approach to the DK iteration described in Section

1.3.3. As such, the procedure is nonconvex and convergence to the globally optimal

compensator and scaling is not guaranteed.

The CRM consists of several distinct steps. First, design a stabilizing compensator

Kno m for the design plant model P. Let Snom denote the closed-loop transfer function.

Section 4.2 discusses the preliminary design step and the methods that yield a "good"

nominal design. The Youla pararneterization and coprime factorization are covered in section

4.3. This results in a closed-loop transfer function S that is affine in the free parameter Q and

equal to Snom when Q = 0.

S = Tll+T12QT21 (4.7)

where Tll = Snom.

Section 4.4 describes the design of the closed-loop system with optimal performance-

robustness. The optimal system is noncausal in general, and imposes a limit on achievable

closed-loop performance. The procedure for finding a causal closed-loop wansfer function is

described in section 4.5, and section 4.6 presents an algorithm for the implementation of the

causality recovery process.

4.2 Nominal Design

This section presents two existing methods for achieving a "good" initial feedback

design. The goal is to design a compensator that has reasonable performance-robustness

properties. This nominal design will serve as the starting point for the CRM.
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4.2.1 H** Synthesis

It is known from section 2.2 that the largest singular value of any matrix M is an upper

bound on the structured singular value, where Ix is computed with respect to some known

perturbation structure.

Ix(M) _< t_ (M) (4.8)

The relationship in (4.8) suggests a compensator that satisfies some _ optimality criterion

will be a reasonable nominal design. That is,

II S I1.. < ¥ =_ II Ix(S)I1.. < ¥ (4.9)

where S is the closed-loop transfer function matrix.

The standard I-L. feedback problem is to find a stabilizing K to minimize the H** norm

of the transfer matrix from disturbances d to errors e (Figure 4.1). In conjunction with the

Youla pararneterization, this translates into the following optimization problem.

rain IITn + Q T21 I1.. (4.10)
Q_H.

In general, the optimal solution involves an infinite-dimensional eigenvalue problem

that cannot be computed directly [20]. However an iterative scheme, referred to as y-

iteration, has been formulated to find the minimum y and solve the suboptimal problem:

Find a Q _ H** such that II Tn+T12 Q T21 I1.. _< y (4.11)
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Thesolutionto thisproblem is well-established and is arbitrarily close to optimal [17-20].

The latest results in the area of H.. synthesis have been put forth by Doyle and Glover

[22]. These researchers have extended the Youla parameterization to a parametedzation of all

stabilizing compensators that satisfy an H**performance criterion. Consider the problem

framework in Figure 4.1. P represents a block 2x2 transfer function matrix with the

following relationships among the signals.

Pll P121 (4.12)P = P21 P22

e = Plld + P12u

Y = P21d + P22u

(4.13)

Introduce a stabilizable and detectable realization of P using the shorthand transfer function

notation with the state-space parameters ( x = Ax + Bu, y = Cx + Du).

where

P = [A, B, C, D] (4.14)

B=[B S2]

[eliC = C2

Dll D12]D = D21 D22J



Chapter 4 Page 77

Each transfer function in (4.12) has a state space representation in terms of (4.14).

Pij=[A, Bj,Ci,Dij] ; i,j=l,2 (4.15)

Rentark The Doyle/Glover parameterization, as presented in [22] and here, requires the

D matrix to have certain properties. The diagonal feedthrough terms, Dll and D22, must be

identically zero. This constraint is met by strictly proper plants P11 and 1:)22. The cross

diagonal terms must satisfy

D12 T D12 = I

D21 D21T = I

(4.16)

The conditions in (4.16) will require P12 and P21 tO be proper, but not strictly proper. More

specifically, D12 must have full column rank and D21 full row rank. Then, Eqns. (4.16) can

always be satisfied by proper scaling of the controls u and measurements y.

The goal is to pararneterize all internally stabilizing compensators K such that

II Fl(P, K) I1_ _<_, (4.17)

where F 1is the lower linear fractional transformation that forms the closed-loop transfer

function matrix in Figure 4.1.

Remark The performance measure y can be set equal tO unity, without loss of generality,

by scaling the disturbances d and the errors e.
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The compensator structure is shown in Figure 4.2.

stabilizing compensators K satisfying (4.17) follows.

The parameterization of all

y U

J

Q

Figure 4.2 The compensator structure for the Doyle/Glover parameterization.

K = FI(J, Q) (4.18)

where Q is any function in H,. such that II Q I1,, _< 1

J = [Aj, Bj, Cj, Dj]

(4.19)

(4.20)

where Aj = A - K F C 2 - B 2 KC + Y** C1T ( C 1 - D12 KC )

Bj=[K F Knl
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Kc - (BzT X** + DI2T Cl ) (I- Y** X**) -I

KCl = ( D21 BIT - C2 ) ( I - Y** X** )-I

X** is the unique, real, symmetric solution of the Algebraic Riccati

Equation

(A - B2DI2TCI)TX** + X**(A - B2DIzTCl) - X**(B2B2 T - BIBIT)x** + _ITC1 = 0

C 1 = ( I - DI2 D12 T ) C I

K F = ( Y** C2T + B I D21T )

KI_ = ( Y** CI T D12 + B 2 )

Y** is the unique, real, symmetric solution of the Algebraic Riccati

Equation

(A - BID21TC2)Y** + Y**(A - BID21TC2) T - Y**(C2TC 2 - CITCI)Y** + BIBI T -- 0
I

B I = B I ( I - D21T D21 )

Remark 1

valid.

Three conditions must be met in order for the above parameterization to be

(1) X.>O

(2) Y.. > 0

(3) _, (Y..X..) < 1

The minimum Tin Eqn. (4.17) should be found (by some iterative procedure) to satisfy these

conditions.
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Remark 2 A compensator satisfying the I-L. criterion in Eqn. (4.17) is computed via the

solution of two Riccati equations. It is no more difficult to design a compensator that meets

an I-I**optimality criterion than it is to compute an LQG solution.

Remark 3 The Youla parameterization describes all stabilizing compensators as a function

of a free parameter Q e H**. However, the parameterization does not establish any

guidelines as to how Q should be chosen in a given situation. While Q = 0 is a stabilizing

solution, the performance of the resulting closed-loop system is unknown. The

Doyle/Glover parameterization makes the zero function a legitimate choice for the free

parameter from a performance perspective. That is,

Jll = [ Aj, KF, KC, 0 ] (4.21)

is a compensator that achieves

II FI(P, Jn) I1., <_ ¥ (4.22)

It is important to note that, unlike the Youla parameterization, the closed-loop map

FI[P,FI(J,Q)] is no longer affine in Q; it is contractive, however.

For the sake of clarity, it is worth reviewing the above design process. Assume that the

design plant P (Eqn. 4.13) is given. IfDll and D22 are not identically zero, add high

frequency poles to make Pll and P22 strictly proper. P12 and P21 must be proper so that D12

has full column rank and D21 has full row rank.
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EL Synthesis via theDoyle/Glover Parameterization

Step 1

Guess the level of achievable performance y.

Step 2

Scale the disturbances d and errors e so that the upper bound in Eqn. (4.17) is unity.

1

B 1 = "_-T BI

1

C1 = _-T C1

1

D12 = _ DI2

1

D21 - _" D21

Step 3

Scale the cross diagonal D terms so that Eqn. (4.16) is satisfied. Su is the square,

nonsingular, scaling matrix for the controls and Sy is the square, nonsingular, scaling on the

measurements. Then,

STSu = D12 TD12

Sy-l(Sy-1)T - D21 I)21T

These equations may be solved for S u and Sy using the Cholesky decomposition [45]. Scale
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the plant matrices as follows.

B 2 = B 2 Sn-1

= SyC2

DI2 = DI2Su -I

D21 = SyD21

D22 = SyD22Su -1

Step 4

Solve the Riccati equations in (4.20) with the appropriately scaled plant.

conditions in Remark 3. If they are not satisfied, adjust T and go to Step 2:

Check the

Step 5

Construct J according to (4.20). Let K = Jll.

As was discussed previously, the singular value serves as an upper bound for the

structured singular value and there may be an arbitrarily large gap between the two quantities.

Therefore, the H** compensator may be an overly conservative design in terms of

performance-robusmess. One way to possibly avoid this problem is discussed in the

following section.

4.2.2 Ix-Synthesis via DK Iteration

A synthesis procedure has been proposed in [6] to take advantage of the

nonconservative Ix analysis framework. The objective of Ix-synthesis is to find a stabilizing

compensator K such that robust stability and performance is achieved.



Chapter4 Page83

IIix[FI(P,K) lII.< T (4.23)

Based on the tx upper bound, a reasonable approximation to this problem is to find a

stabilizing K and a real, diagonal scaling matrix D so that

IIDFI(P, K)D-' II.< T (4.24)

This suggests an iterative approach to Ix-synthesis, referred to as DK iteration. The aim

is to minimize the left hand side of the expression in (4.24) by alternatively minimizing over

D and K while holding the other constant.

minIIDFI(P,K)D "III (4.25)
D,K

For fixed D this is just a scaled I-L. control problem and may be solved by the Doyle/Glover

parameterization above. When K is fixed, (4.25) is minimized with respect to D at each

frequency. This constitutes a convex optimization program in D, and all local minima are

global [24]. The result is a real, diagonal matrix D(o) at each frequency. The magnitude

frequency response D(t0) is fit with a stable, minimum phase, rational transfer function.

Note that the phase of D does not effect the norm in (4.25). This procedure is continued until

it converges, or until a compensator is found that yields acceptable closed-loop performance

(i.e. Eqn. 4.24 is satisfied). DK iteration is summarized below.
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DK Iteration

Step 1

Choose an initial transfer function for the scaling D. The most obvious choice is D = I.

Step 2

Find a stabilizing K that minimizes II DFI(P, K)D -1 I1...

Step 3

Evaluate the Ix properties of this solution. This results in a new scaling matrix D at each

frequency.

Step 4

Approximate the new D scaling from Step 3 with a rational transfer function matrix

(stable, minimum phase), and go to Step 2. Note that this rational approximation must be

done accurately to ensure convergence of the DK iteration.

Using the Doyle/Glover I-L. solution in Step 2, DK iteration becomes an efficient means

for attacking the Ix-synthesis problem, and could in theory come arbitrarily close to the IX-

optimal solution. Unfortunately, the minimization over D and K is not jointly convex. This

implies that DK iteration is not guaranteed to converge to the globally optimal D and K. In

fact, local minima have been found in numerical studies.

Remark The CRM cannot improve the robustness properties of a compensator resulting

from a converged DK iteration, even if the solution is a local minimum. This is a direct

consequence of the fact that the D scaling remains constant throughout the CRM design
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process. However, an intermediate result from the DK iteration should prove to be a good

nominal design and starting point for the CRM.

The result of this section is an initial compensator Knom, designed by some existing

methodology. Snom is the nominal closed-loop transfer function, and Dno m iS the associated

scaling. The measure of nominal robustness is 7nom"

Sno m = Fl(P,Knom)

Dnom(co) = arg inf o [ DSnomijC0)D -1 ]
DED

D = { diag(diI,dzI,...,dnI)Idj• R+ }

'Ynom = II Dno m Sno m Dnom -1 I1.0

4.3 Parameterization of All Stabili_ng Compensators

In this section we present the parameterization of all stabilizing controllers and, as a

direct consequence, the parameterization of all internally stable closed-loop maps, in terms of

a free parameter Q _ I-L.. A technique is described to incorporate a given compensator into

the parameterization so that the given closed-loop is achieved when Q = 0. State-space

formulas for the parametedzation are presented. These results have been widely reported

[17, 20, 23, 46], and the treatment here closely parallels that in [20].

The concept of coprime factorization of transfer function matrices is an integral part of

the Youla pararneterization.
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Definition 4.1 Two matrices M and N in RH** are right-coprime if they have an equal

number of columns and there exist matrices X and Y in RH** such that

XM + YN = I (4.26)

N

Definition 42 Two matrices M and N in RH** are left-coprime if they have an equal

number of rows and there exist matrices X and Y in RI-I** such that

MX + NY = I (4.27)

Lemma 4.1 For each proper real-rational matrix P there exist eight RH** matrices

(nonunique) satisfying

p = NM-1 = NI-I_ (4.28)

(4.29)

N N

where N and M are right-coprime and N and M are left-coprime. Equation (4.29) is known

as a Bezout identity.

Once again consider the block diagram in Figure 4.1 and the realizations in (4.12) and

(4.15). The following two theorems are well known.

Theorem 4.1 K stabilizes P if and only if K stabilizes P22.

Theorem 4.2 There exists a proper, real-rational transfer function K achieving internal

stability if and only if [ A, B 2 ] is stabilizable and [ C2, A ] is detectable.
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Remark Theorems 4.1 and 4.2 establish the role of P22 in the existence of an intemaUy

stable closed-loop system. The sequel assumes that the stabilizability and detectability

conditions are satisfied, and the factorizations in Eqns. (4.28) and (4.29) are computed for

P = P22.

Theorem 43 The set of all proper controllers achieving internal stability for the

feedback system in Figure 4.1 is parameterized by the formula

K = ( U + MQ )( V + NQ )-I (4.30)

= (V+QN)d(U+QM)

= Ko + _-1 Q ( I + V -1 NQ) -1 V -1

where Q e I-I**such that ( I + V -1 NQ)-l(jco) is invertible at co = **, and K o = UV -1 = _-1 U.

K can also be expressed in terms of a linear fractional transformation (Figure 4.2).

where

K - FI(J , Q) (4.31)

(4.32)

The above theorem parameterizes all stabilizing controllers for the plant P in terms of a free

parameter Q. The affine pararneterization of the closed-loop transfer function from

disturbances d to errors e follows.
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Theorem 4.4 The set of all closed-loop transfer function matrices S from d to e

achievable by an internally stabilizing proper controller is

S = { S I S = Tll + T12 Q "1"21, Q • I-L., I + D22 Q(jto) invertible at co = **}

where
N

Tll = Pll + P12 U M P21

T12 = P12 M

T21 = M P21

Remark The closed-loop transfer function is the result of a lower linear fractional

transformation with "1"22identically zero (Figure 4.3), i.e. S = FI(T, Q).

d

T

e

Q

Figure 4.3 Representation of all stable closed-loop transfer functions.

Explicit state-space formulas exist for the computation of all the above coprime

factorizations and transfer function matrices. These will be recounted here for the sake of
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completeness.We beginwith a realization of P22 = [ A, B2, C2, D22 ], where [ A, B 2 ] is

stabilizable and [ C 2, A ] is detectable. Compute a stabilizing, full-state feedback gain F. It

is well known from LQG theory that one such F is

where

F =- B2 T X (4.33)

X is the unique, real, symmetric solution of the Algebraic Riccati

Equation

ATx + XA- XB2B2TX + C_TC2 = 0

Then,

M = [ A + B2F, B2, F, I ]

N = [ A + B2F, B2, C2 + D22F, D22 ]

(4.34)

(4.35)

The left coprime factorizations can be obtained by a duality argument. Compute a

stabilizing filter gain H via a filter Algebraic Rieeati Equation.

where

H = -Y C2T (4.36)

Y is the unique, real, symmetric solution of the Algebraic Riccati

Equation

AY + YA r- yC2TC_.2Y + B2B2 T = 0

Then,

N

M= [A + HC 2,H, C 2,I]

N = [ A + HC. 2, B 2 + I-ID22, C2, D22 ]

(4.37)

(4.38)
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The Bezout factors are:

V = [ A +B2F, -H, C.2 + D22F, I ]

U = [ A + B2F, -H, F,.0 ]

V = [ A + HC 2, -(B 2 + HD22), F, I ]

U = [ A + HC 2, -H, F, 0 ].

(4.39)

(4.40)

(4.41)

(4.42)

A state-space realization of J can be found from the above results:

J = [Aj, Bj, Cj, Dj] (4.43)

where Aj = A + HC 2 + B2F + I-ID22F

Bj = [ -H B2+HD22 ]

cj = _(c2 +

[oi]Dj= I -D22

Equation (4.43) leads to realizations of the closed-loop transfer functions Tll, T12, and T13.

Tll = [AT11, BT11, CTll, DT11 ] (4.44)

where AT11 = [ A+B2F -HC 2 ; 0 A+HC 2 ]
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.HD21 ]
BTI I = LB 1 + I-ID21

CTII = [ CI+DIaF Cl ]

DTI 1 -- DII

T12- [AT12, BT12, CT12, DT12 ] (4.45)

where AT12 = A+B2F

B.rl 2 = B 2

CT12 = Cl+D12F

DT12 - D12

T21 = tAT21' BT21' %1' DT21 ] (4.46)

where AT21 ffi A+HC_, 2

BT21 ----BI+HD21

1 = C 2

DT21 - D21

Theorem 4.4 parameterizes all stable closed-loop maps in terms of an I-I**function Q.

The function Q = 0 results in a closed-loop transfer function S = T 11. While it is guaranteed

that this closed-loop map is internally stable, nothing can be said concerning the performance

or robusmess of the resultant system. The following modification to the Youla

parameterization will ensure that T n represents a reasonable closed-loop design. These

results will be used to make T 11 the initial closed-loop design.
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Let thecompensatorKno m and the associated closed-loop transfer function Snom be

specified. Since Kno m is a stabilizing compensator, Theorem 4.3 states that there exists a

Qnom • I-L. such that

Kno m = ( U + MQnom )( V + NQnom )-I (4.47)

Solving for Qnom yields

Qaom = ( KnomN " M )-l( U- KaomV) (4.48)

Compute Uno m and Vno m according to

Uno m = U + MQnom (4.49)

Vnom = V + NQnom (4.50)

The above manipulations yield the following results.

Theorem 4.5 Unom and Vm_a are in I-I**and sadsfy the Bezout identity

-NUnom+ MVnm - I (4.51)

Proof'. M, N, U, and V are in I-L. (Lemma 4.1), and Qnom is in I-I**(Theorem 4.3).

Therefore, Uno m and Vnom are in I-L.. To prove (4.51) substitute (4.49) and (4.50) into the

equation and use the Bezout identity in (4.29).

Remark Theorem 4.5 establishes Uno m and Vno m as legitimate Bezout factors and, as

such, they may be used in Theorems 4.3 and 4.4.
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Lemma 4.2 The set of all proper controllers achieving internal stability for the

feedback system in Figure 4.1 may be parameterized by the formula

K = ( Uno m + MQ )( Vnora + NQ )-1

This leads to another characterization of the set of all stable closed-loop transfer function

matrices S.

S = { S I S = Tll + T12 Q T21, Q _ H**, I + D22 Q(jto) invertible at t.o = 00 }

where
N

Tll = Pll + P12 Unom M P21

•_ Sno m

T12 = P12 M

T21 = M P21

Proof'. Sno m = FI(P, Knom) by definition. From the definition of lower linear fractional

transformation,

FI(P, Knom) = P] ] + Pz2 Knom ( I - P22 Knom )-1 P21"

From (4.47), (4.49), and (4.50), Kno m = Ono m Ynom -1. From (4.28), P22 = NI-1N.

Substitute the above to equations into FI(P, Knom) and use (4.29) to get the desired result.

Remark We now have a procedure to incorporate the nominal closed-loop Sno m into the

parameterization of all stable closed-loop transfer functions. First, compute the coprime

factorizations of P22 and the Bezout factors in (4.28) and (4.29) using the state-space

formulas in (4.33) - (4.42). Parameterize all stabilizing compensators in terms of these

factors and the free parameter Q (E,quation 4.30). Solve for the particular Qnom that will yield
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thenominalcompensatorKnora when applied to Eqn. (4.30). Use Qnom to compute the new

Bezout factors Onorn and Vno m. Form the closed-loop transfer functions Tll, T12, and T21

according to Theorem 4.4 with Un0 m in place of U. The result is Tll = Snom.

The closed-loop transfer function Tll represents a reasonable feedback system (i.e. one

with known performance and robustness). Now Q = 0 is an acceptable choice for the free

parameter. The aim of the Causality Recovery Methodology is to find another Q _ I-I**such

that the closed-loop robustness is no worse than the nominal design, and hopefully better.

The next three sections describe the CRM in detail.

4.4 Optimal Noncausal Design

At this point it is worth recalling the objectives of the CRM. Simply stated, we would

like to find a transfer function matrix Q such that

Q _ I-I..

IIDnom(Tll+T12QT21)Dnom "1 I1.. < y

(4.52)

(4.53)

Since we are interested in improving the performance robustness of the closed-loop system

over the nominal design Tll, T is chosen such that

0 < T <Tnom (4.54)

The Causality Recovery Methodology treats the constraints in (4.52) and (4.53)

independently. This allows the designer to ignore the causality restriction on Q and examine

the synthesis problem at each frequency. The rationale behind this approach can be simply
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describedin a single-input, single-output context.

A function in I-L. (i.e. a stable, causal function) is analytic in the right half plane.

Cauchy's Integral Theorem applied along the familiar Nyquist contour imposes constraints

on the frequency response of such a function (i.e. Bode's gain and phase integral

relationships [1]). The phase (gain) of a stable, causal transfer function is completely

determined by the gain (phase) over all frequencies. When the stability/causality restriction is

lifted, there is no relationship between the gain and phase of a system from one frequency

point to the next. Therefore, we can treat each frequency point as independent from every

other frequency.

This philosophy allows one to maximize the "robustness" of the feedback system at

each frequency using only complex matrix arithmetic. The result is a closed-loop frequency

response with optimal performance-robustness. The price paid for such optimality is that the

function will not be causal in general. That is, it will be a member of L** not I-L,. However,

such a system will represent an upper bound on achievable performance, or equivalently a

lower bound on Y.

The frequency by frequency approach to maximizing robustness suggests the following

optimization problem for finding the optimal, noncausal Q*.

Q'(j¢.o) = argmin _ { Dnem(j_)[ Tll(J¢.o) + T12(J£O ) Q T21(Jo_) ]Dnom(J£o) "1 }(4.55)

Q_C m_u
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Theorem 4.7 The optimization in (4.55) is a convex program in Q.

Proof'. We must show that the objective function and the feasible set are convex. First

prove the objective function is convex. The argument jo_ will be dropped for convenience.

Let Q = 0Q1 + (1-0)Q2, for 0 < O < 1.

"_ { D[ Tll + T12QT21 ] D -1 }

= _ { OD[ Tll + TI2Q1T21 ] D "1 + ( 1 - 0 )D[ Tll + T12Q2T21 ] D -1 }

< "_ { 0D[Tll + T12QIT21 ] D -1 }+ "-_ { (1 - O)D[Tll + T12Q2T21] D -1 }

_< 0 "_ { D[Tll + T12QIT21] D -1 }+ (1-0) --b { D[Tll + T12Q2T21] D -1 }

Therefore, the objective function is convex.

Next, prove the feasible set is convex. This is trivial, as the sum of any two complex

matrices is a complex matrix.

Remark The optimization in Eqn. (4.55) is carried out independently at every frequency.

The parameters are the real and imaginary parts of the elements of Q. This results in having

to calculate 2rap real, scalar parameters at each frequency.
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Definethemeasureof optimalnoncausal performance

V*= IIDnom(Tll + T12Q*T21)Dnom -1 I1.. (4.56)

The measure y* is a lower bound on the performance-robustness that may be achieved by a

Q • I-I**. That is, the T that allows (4.52) and (4.53) to be satisfied is such that

_* --< _ <-- _nom (4.57)

Remark The inequality in (4.57) is an acknowledgement of the fact that robustness

defined in terms of II D(Tll + T12QT21)D -1 I1,, must be sacrificed to achieve a causal

compensator. The robustness margin of a closed-loop system with a Q • H** will, in

general, be less than p* = 1/y*.

4.5 Causality Recovery

The noncausal function Q* yields optimal closed-loop robustness as measured by the

robustness margin p*. The caveat is that Q* _ L_ and is not necessarily in I-L.. Thus, the

restriction imposed by the Youla parameterization is not satisfied and nominal stability of the

closed-loop is not achieved. In general, the closed-loop robustness properties associated

with Q* cannot be mimicked by a transfer function Q • I-L.. In this section we propose an

algorithm to find a stable, causal Q such that the closed-loop performance-robustness is no

worse than the nominal design, and hopefully better, i.e.

II Dnom(Tll + T12QT21)Dnom -1 I1.. < '_nom (4.58)

The process of causality recovery may be thought of as an adjustment of the frequency
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responseof Q* in such a way as to reduce its noncausality, or distance from I-I., subject to a

robusmess constraint on the closed-loop. An alternative view is that causality recovery is a

search for an _ function over a tube in complex matrix space versus frequency. The robust

performance specificationdictatesthegeometry of thetube.

Define the setof frequency responsesthatsatisfytherobustnessrequirementin (4.53).

= { Q e L.. I II Dnom(Tll + T12QT21)Dnom "1 II. _ T } (4.59)

for y* < y < _¢nom. At a specific frequency, the feasible set _ may be interpreted as a set of

complex matrices satisfying

{Dnom(JC0)[Tll(JCO)+ TI2(Jc0)QT21(J0))]Dnom(jC0)"I} < T (4.60)

The feasible set # contains all L** functions that satisfy the robust performance

specification. We wish to determine if any of the L** functions in (4.59) are also in H**. The

fundamental component of the Causality Recovery Methodology is an optimization problem

to establish the existence of a Q e # n H**. Recall Nehari's Theorem (see Section 2.3)

which states that a function Q is in I-I**if and only if the norm of the Hankel operator with

symbol Q ( II FQ II ) is zero. This suggests the following optimization is the appropriate

problem to solve.

rain IIrQ II (4.61)
Qe@
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Theorem 4.8 The optimization in (4.61) is a convex program in Q.

Proofi Theorem 2.5 states that the objective function is convex. The feasible set _ is

proved to be convex as follows.

Let Q1 and Q2 be elements of the set O as defined in (4.59). Construct Q as

Q = 0Q1 + (1-0)Q2, for 0 < 0 < 1.

Prove that Q is in • as well.

IIDnom(Tll + T12QT21)Dnom -1 I1..

= IIODnom(T 1l+T12Q1T21)Dnom -1 + (1-0)Dnom(T11+T12Q2T21)Dnom "1I1..

_< 0llDnom(Tll+T12Q1T2x)Dnom'lll** + (1-0)llDnom(Tlx+T12Q2T21)Dnom-111**

<_ Oy + (1-0)¥

_<_/

Therefore, Q is in # and the set is convex.

If an I-I**function lies within _ (for a given T), then the minimum in (4.61) is zero and

the argument Q results in a nominally stable closed-loop that achieves the robust performance

objective. If T is too small, a stable, causal function may not lie in the feasible set and the

minimum Hankel norm will be some positive number. A binary search over [T*, ThOrn]can

be used to find the minimum T that admits an I-I**function into the feasible set. The search

procedure is analogous to the T-iteration that is performed as part of the H** design process as

outlined in Section 4.2.1 and in [17, 19, 20].
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Remark 1 We can only guarantee that the closed-loop performance-robustness is no worse

than the initial design. That is, the robustness margin p will be greater than or equal to Pnom"

For example, if the initial compensator is the result of a converged DK iteration, then the

CRM cannot improve on the design and Q = 0 will be the result. Of course, the usefulness

of the CRM is demonstrated when a Q e I-I_ is found for y < Ynom"

Remark 2 The minimization in (4.61) is an infinite-dimensional, convex program due to

the def'mition of @ as a set of L** functions. Practically speaking, only a finite-dimensional

solution may be implemented, and an approximation to (4.61) and the CRM y-iteration will

have to be made. We will see in the next section that convexity must be sacrificed in order to

develop an algorithm that is numerically tractable.

4.6 An Algorithm for Causality Recxwery

This section describes an algorithm that will compute, in finite time, a finite-

dimensional, rational transfer function matrix Q with the following properties.

(1)

(2)

II FQ II _<e

II D_,_(T u + T12QT21)Dnom -1 I1.. _< 3'm_n - ke

for any e > 0, and some k > 0.

A QrI in H** may then be computed that approximates Q in the sense that IIQH - QII** < e.

The closed-loop robustness associated with QI-I is within a multiple of e of the robustness

measure associated with Q.
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Definethefinite-dimensionalfeasibleset

u

= { Q e RL**(n) [ II Dnom(Tll+T12QT21)Dnom -1 II_ _ y } (4.62)

where RL**(n) is the set of rational L** functions with real coefficients and McMiUan degree

less than or equal to n. @ is no longer a convex set and the optimization problem

rain_IIr o II (4.63)
QeO

may have multiple local minima. It may be concluded, from a property of rational functions,

that as the degree n approaches infinity, @ becomes "dense" and approaches the convex set

@. We will see shortly that this is not a critical property. That is, for any degree n, we will

be able to construct a sequence of functions in RL**(n) that at least satisfy the nominal

robustness specification and have Hankel norms approaching zero. Of course, the aim is to

find a finite-dimensional function Q in H** that improves the feedback system robustness.

The algorithm that will be used to perform the minimization in (4.63) is the modified

pattern search procedure described in [43]. It is essentially a sequential search along the

coordinate axes in the parameter space. The starting point for the optimization is the

noncausal function Q* that yields optimal performance-robustness. Ideally this function is

computed at every frequency according to Eqn. (4.55). In practice, some large number of

frequency points N is used to compute Q*, where N >> n. An n th order rational

approximation Q* is found by performing a weighted, least-squares fit of the frequency

response data for each element of Q* [8]. The lower bound on the robustness measure

becomes

m

'Y* = IIDnom(Tll + T12]_T21)Dnom "1 I1.. (4.64)
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The parameterization of Q in (4.63) is an important issue. The Ix analysis framework

and the CRM are fundamentally frequency-domain tools. Therefore, an appealing

parameterization from a conceptual, as well as a numerical, point of view is the multivariable

pole/zero form. For example, in the two-input, two-output case, Q is described as

11 11 k12(s+z12)(s+z2 )... (s+z12)]

kll(S+Zl )(S+Z2 )... (s+zln 1) 1 12

k22(s+z12)(s+z2 )"" (4.65)Q(s)= Lk,21(s+z21)(s+z 1)...(s+z21) 2 22 (s+z 2)j
(s+Pl)(s+p 2) ... (s+p n)

where the poles, zeros, and gains axe the parameters in the optimization.

From a numerical point of view, the pole/zero parameterization is attractive because the

dynamic range of the parameters will be reasonably small (i.e. restricted to the frequency

range of interest). In contrast, the coefficients of the numerator and denominator

polynomials may exhibit a tremendous range of values [e.g. (s+10)l°]. Q as a function of

the poles and zeros is highly nonlinear;, however, since we perform a pattern search, and not

a gradient search, this proved not to be a significant disadvantage.

The minimization of the Hankel norm over the feasible set involves an adjustment of the

poles and zeros of Q in such a way as to reduce the measure of noncausality subject to the

frequency-domain constraint imposed by the feasible set. There are three basic ways to

reduce the Hankel norm of the transfer function matrix in Eqn. (4.65).

(1) Move the unstable poles into the left half plane or to infinity

(2) Cancel out the unstable poles with nonminimum phase zeros

(3) Reduce the gain kij in (4.65)
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m

It is worth noting that the feasible set • is never actually constructed as part of

the design process; it is a conceptual notion only. The minimization algorithm reduces the

Hankel norm by perturbing the poles and zeros of the Q function. The perturbation is

admissible if it reduces the Hankel norm and is a function in _. Thus, it is only necessary

to check if a particular function is in _ and not to construct the set itself. This can be done

for any n and T by checking the defining equation (4.62).

The causality recovery process is slightly more complicated in the finite-dimensional

case due to the nonconvexity of the problem. If the minimum in (4.63) is not zero, one of

three scenarios is possible.

(1) A local minimum has been found.

(2) An RH**(n) function is not contained in @.

(3) An I-I**function does not exist to satisfy the robustness constraint.

Only ad hoe methods exist for circumventing situation (1). That is, one can try a

different starting point, optimization algorithm (i.e. simulated annealing), parameterization,

etc. We will not discuss this case further. As we shall see in Theorem 4.10, it is possible to

reduce the minimum Hankel norm and avoid situation (2) by increasing the order n of

admissible functions in _. The third case is remedied by relaxing (i.e. increasing) the

robustness specification T- Before we present the causality recovery algorithm, some

preliminary results are required.
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Theorem 4.9 Let 7nom = II DnomTllDnom -1 I1... Suppose there is a function Qo e

RL**(n) with Hankel norm II FQo II = ao > 0, and a To satisfying

II Dno m ( Tll+T12QoT21 ) Dnom -1 I1.. _< To < 7nom

Then, there exists a Q e RL**(n) such that, for any e > 0 and a k > 0,

(1) II FQ II _<e

(2) II Dnom(Tll + T12QT21)Dnom "1 I1.. _< T_om " ke

Proof. The most straightforward way to prove the existence of such a Q is to simply

construct the function. Let Q be a convex combination of the function Qo and the zero

function, i.e. Q = 0Qo + (1-0)(0) = 0Qo for 0 < 0 < 1.

Then, II FQ II = 011 l"Qo II, and the conditions of the theorem are satisfied for a 0 < e/a o.

IIDnom(Tll+T12QT21)Dnom -1 II**< 011Dnom(T11+T12QoT21)Dnom -1 II**+

(1-e)ll DnomTllDnom -1 II..

_< 0Yo + (1-O)Tnom

_< _'7o/ao + (1-V.!ao)Tnom

< T=m -e(T.o_-To)/%

<Tnom -k£

Remark Theorem 4.9 guarantees that the CRM algorithm will terminate in finite time

with a finite-dimensional function Q of arbitrarily small Hankel norm. The Hankel norm

reduction may simply be accomplished by reducing the gain of Qo. Note that, all other

factors being equal, a function Qo', with Hankel norm a o' < a o, yields a constant k' > k in

Theorem 4.9, and an improved robustness measure. This suggests that we find the function
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with minimumHankelnormbeforereducingthegainof Q (or equivalently increasing y).

This motivates the following theorem.

Theorem 4.10 Given the feasible sets

_n = { Q • RL**(n) [ IIDnom(T11 + T12QT21)Dnom-lll** < y}

_n+l = { Qe RL**(n+I) [ IIDnom(Tll + T12QT21)Dnom-ll[** _< _/}

Let

= mi.__IIrQ IIa n

Qe On

%1 = rain IIFQII
Q ¢ On+1

Then, an+ 1 < a n.

Proof'.
m

This is a simple consequence of the fact that #n is a subset of _n+l"

Remark For a fixed performance specification y, increasing the order of admissible

functions in # will result in a minimum Hankel norm that is less than or equal to the

previous minimum. This suggests a way to possibly reduce the Hankel norm in the causality

recovery process.
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In light of Theorems(4.9)and(4.10),thefinite-dimensional causality recovery

algorithm is presented. The following definitions will be needed.

_i = { Q • RL**(ni) I IIDn°m(T11 + T12QT21)Dn°m-llI** < Yi}

_i+l = rain II FQII

Qe • i

Qi+l = arg mill II rQ II

Qe • i

The starting point for the minimization over the feasible set is Qi.
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The Causality Recovery Algorithm

Choose e 1 >0, _ > O, 0 < 13< 1

Qo=Q *

no = McMillan degree of Qo

Compute al and QI

nl=no+ 1

Tl=?O

Compute ot2 and Q2

i=2

while oti > e 1

while (ai-1 - °ti) >

n i = ni. 1 + 1

Ti =Ti-1

Compute o_i+1 and Qi+l

i=i+l

end

Ti -" ( 1- 13)Ti-1 + 13ThOrn

Compute o_i+ 1 and Qi+l

i=i+l

[begin outer loop]

[begin inner loop]

[end inner loop]

end [end outer loop]
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Thealgorithmstartswith aninitial robustness specification Y0 and McMillan degree n o

and attempts to find a Q _ RI-L.(n0) such that the specification is satisfied. If such a function

is not found, the admissible order of Q is increased by adding a stable pole/zero cancellation

to each element The order of Q is increased as long as it results in greater than an

reduction in the Hankel norm. When this level of improvement in the Hankel norm ceases,

the algorithm decides that increasing the order of Q is no longer worthwhile and the

robustness specification parameter y is increased.

Theorem 4.10 guarantees that oq is a non-increasing sequence. The sequence

converges because oq is bounded below by zero. This ensures that the inner loop (i.e. the

loop where the McMillan degree is increased) will eventually terminate. That is, the fact that

the o_i sequence converges implies that an e2 improvement cannot be maintained indefinitely.

It is clear that a smaller _ will allow the inner loop to reduce the Hankel norm ftLrther

and will result in a higher dimensional Q parameter. As the McMillan degree is increased, the

optimization approaches a convex program and the global minimum Hankel norm (for some

T). Unfortunately, the global minimum is not known a priori, and it is impossible to state

how close one is to the global solution as a function of _. However, even in the absence of

such knowledge, the inner loop serves a useful purpose. It reduces the Hankel norm for a

constant T and potentially allows more of an improvement in performance-robusmess. That

is, the constant k in Theorem 4.9 is increased.

The outer loop is where the relaxation of the robustness specification takes place. This

may be viewed as a last resort after the option of increasing the order of Q is exhausted. At

this stage, the algorithm essentially assumes that no I-L. function will satisfy the given

specification. Theorem 4.9 states that there eventually will exist a Q _ RL**(n) of arbitrarily

small Hankel norm in the feasible set if the robustness specification is increased to within ke 1

of 'Ynom•

The difference equation in the outer loop generates a Ti sequence that approaches 'Ynom
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exponentially from the initial condition _, and is within IcE1 of Tnom in a finite time. The

parameter 13represents the time constant of the difference equation, and a plot of time

responses for several 13's is in Figure 4.4. The time constant determines how rapidly Ti

approaches Tnom and, therefore, controls the accuracy with which the minimum robustness

specification that admits a causal solution is found. The choice of 13involves a fundamental

tradeoff between speed and accuracy. In any case, the outer loop ultimately terminates with a

t-mite-dimensional, rational transfer function Q such that II FQ II _<e 1.

Figure 4.4

2 4 6 8 10 12 14 16 18 20

iteration

Relaxation of robusmess specification T for different time constants 13.

Recall that the set of stabilizing controllers is pararneterized in terms of a function in

H**, i.e. a function whose Hankel norm is identically zero. The causality recovery algorithm

only guarantees producing a Q whose Hankel norm is less than or equal to e 1. At this point
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thebestI-L,approximationQa of theL**functionQ must be computed (see section 2.3.3).

This motivates the following theorem.

Theorem 4.11 Given a function Q e L** such that

(1) II FQ II < e 1

(2) II Dnom(Tll + T12QTzl)Dnom -1 I1,. < T

Then, there exists a Qrl • I-I**such that

IIDnom(Tll + T12QHT21)Dnom -I I1.. _< T+ ke 1

for a k > 0.

Proof: Since II I"Q II < e 1, Nehari's Theorem (see Section 2.3.2) states there exists a

QH in H** such that II QH - Q I1.. < e 1.

Let QH = Q + (QH- Q)

II Dnom(Tll+T12QaT21)Dnom -1 I1.. _.< II Dnom(Tll+T12QT21)Dnom "1 I1.. +

II Dnom[T12(Q H - Q)T21]Dnom -1 I1..

<_. _/+ II DnomT12 I1.. e 1 II T21Dnom -1 I1..

< _+k_ 1

Remark According to Theorem 4.11, el must be chosen to be sufficiently small. Then,

the best I-I**approximation of the function generated by the causality recovery process results

in closed-loop performance-robustness that is arbitrarily close to that achieved by causality

recovery.
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In this section,analgorithmthatisamenableto computerimplementationhasbeen

developedto find a stable,causaltransferfunctionQ. Theresultingclosed-loopmapexhibits

a levelof performance-robustnessthatis betterthanor equalto thenominaldesign.

4.7 Concluding Remarks

This chapter has presented the Causality Recovery Methodology in detail. The CRM

computes a causal compensator that guarantees the resulting closed-loop system will exhibit

performance-robustness that is no worse than, and hopefully superior to, the robustness of a

given nominal design. The a priori information required is just the plant P (which includes

the control plant G, sensors, actuators, and weighting functions) and the initial stabilizing

compensator Kno m.

The function yielding optimal robustness (in the scaled singular value sense) is

noncausal, in general. The causal compensator is found by _/-iteration and the solving of a

series of infinite-dimensional convex optimization programs. Several theorems establish the

foundation for a finite-dimensional implementation of the CRM. This causality recovery

algorithm will guarantee the finding of a stable, causal transfer function that is finite-

dimensional; however, the global minimum in terms of robustness may not be achieved. The

CRM is summarized below.

Causality Recovery Methodology

Step 0 ( A priori Information)

FDLTI model of the design plant P.

Step 1 (Nominal Compensator Design)

Design the stabilizing compensator Kno m using an existing synthesis methodology.
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Sno m = FI(P, Knom) is the nominal closed-loop transfer function. Compute the performance-

robustness properties of Snom via

Dnom(co) = arg inf o [ DSnom(jco)D"1]
DeD

D = { diag(diI,d2I,... ,dnl)Idj• R+ }

'Ynom = II Dno m Sno m Dnom -1 I1..

Note that Dr_ m is just a scaling frequency response function. A finite-dimensional realization

of Dnom is not required.

Step 2 (Youla Parameterization)

Compute the COl)time factorizations of the plant transfer function matrix P99 (Eqns.

4.28 and 4.29), and the Bezout factors Uno m and Vno m (Eqns. 4.49 and 4.50). Then, the

parameterization of all stabilizing compensators yields the set of stable closed-loop transfer

function matrices described by

S = Tll + T12 Q T21

where TII - Sno m and Q • H**.
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Step 3 (Optimal Noncausal Design)

Compute the function in L.. that maximizes performance-robusmess by solving

Q*(jo)) = arg mirl G { Dnom(JO))[ Tll(J{.0 ) + T12(Jo) ) Q T21(Jo_ ) ]Dnom(JC0) -1 }
QeC trap

m

at each frequency. Fit an n th order transfer function Q* to Q*.

u

T* = II Dnom( Tll + T12"Q-*T21 )Dnom -I I1..

Step 4 (Causality Recovery)

Use the algorithm in Section 4.6 to find a Q e RH**(n) such that

II Dno m ( Tll+T12QT21 ) Dnom -1 I1.. _< Tnom

Step 5 (Construction of Compensator and Closed-loop)

K = ( Ono m + MQ )( Vno m + NQ )-1

S = T11+T12QTzl

where M, N, Unom, and Vno m are the factorizations from the Youla parameterization.
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CHAPTER 5. DESIGN EXAMPLES

5.1 Introduction

This chapter presents numerical examples to demonstrate feedback system synthesis via

the Causality Recovery Methodology. More specifically, we show how the CRM improves

the performance-robustness of a feedback system. The causality recovery process is

examined, and the resulting (causal) compensator and closed-loop system analyzed in the

time and frequency domains. Two designs, one SISO and one MIMO, illustrate the

usefulness, as well as the drawbacks, of the CRM.

The feedback problem to be considered here is the conventional one discussed in

Section 1.2.6. That is, we will be given a nominal plant model and a description of (i.e.

norm-bound on) the multiplicative uncertainty at the plant input. The performance

specification is a frequency-domain bound on the (output) sensitivity function. The standard

problem is formulated in terms of the design framework in Figure 1.7 so that the CRM may

be applied. The results are then interpreted in terms of the conventional feedback structure

(Figure 1.9).

5.2 SISO Case: The Adaptive Benchmark

This typical aerospace problem was proposed by Franklin and Stein [47] to serve as a

benchmark example for robustness studies of adaptive control. It is a satellite control

problem with known rigid body dynamics, an uncertain bending mode of known structure,

and an unstructured, norm-bounded uncertainty. The SISO control plant model is

G(s)[ 1 + L(s) ] (5.1)
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where

9(ds+ k)

G(s) = sZ(s2+ 10ds+ 10k) (5.2)

[ Lfj¢_)I < ILo(j_) [ (5.3)

10s2
L(s) = 2 (5.4)

s + 8s +64

The exact values of the parameters d and k in Eqn. (5.2) are unknown; however, they

are known to lie in the ranges

0.1 < k<0.4 (5.5)

0-04_1_ -< d -< 0.2_1 _
(5.6)

These parameter ranges cause the natural frequency of the bending mode to vary from 1 to 2

radians/second with a damping ratio between 0.02 and 0.1.

The feedback problem, as has been stated in this thesis (Section 1.2), assumes that the

modeling uncertainty is of the unstructured, norm-bounded (complex) type. The real

parameter uncertainty in (5.5) and (5.6) is not dealt with directly in g-synthesis or the CRM,

and the variations in (5.5) and (5.6) must be covered by a complex uncertainty block

(weighting function). To compute this uncertainty weighting function, a bound must be

found on the total modeling error, i.e. the real parameter variations (Eqns. 5.5 and 5.6) and

the norm-bounded uncertainty in Eqn (5.4).



Chapter5 Page116

Define the plant parameter vector

0= d • (5.7)

and the associated plant G(s,0). 0 may take on any value consistent with (5.5) and (5.6).

The nominal parameter vector is denoted 0no m. For this example, we arbitrarily chose

0n°m = [O.O19J (5.8)

The frequency response of G(S,0no m) is shown in Figure 5.1. The double-integrator

response with a lightly damped resonance (_ = 0.06) at a frequency of 1.6 radians/second is

illustrated.

4O

2O

-60

-80 ...........
0.I 10

"" 0

v

_-20

"_ -40

t m | • • |

1.0

fr_lUa_-"7 (r'ad/_)

Figure 5.1 Frequency response of the nominal plant G(S,Onorn) for the SISO example.
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The plant model is now described as

G(s,0nom) [ 1 + l(s,0)][ 1 + L(s)] (5.9)

where l(s,0) denotes the multiplicative error due to the parameter uncertainty.

G(s,0)
l(s,e) = 1

G(S,0no m)
(5.10)

Define a new multiplicative error L' that incorporates the effect of both forms of

uncertainty. The plant model becomes

G(S,0nom)[1 + L'(s,e)] (5.11)

where L'(s,0) -- l(s,0) + [1 + l(s,0)lL(s) (5.12)

A frequency-dependent magnitude bound L'o(CO) on the total multiplicative error (Eqn.

5.12) can be computed at each frequency.

L'o(CO)= sup [ Il(jo ,o)I+I [1 + lOco,O)]Lo(jCo)l]
0

(5.13)

where 0 varies over the ranges in (5.5) and (5.6). A simple grid search was performed to

find L'o(C0). Then, the uncertainty weighting function Wz(j_) is a stable, minimum phase

approximation of L'o(C0); for this example, the bound on the multiplicative error is

Wz(s ) = 10Lo(S ) (5.14)
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TheBodeplotof Wz(.jc0)is shownin Figure5.2. Theuncertaintyweightis flat above8

radians/second.

°i
4O

Figure 5.2

2O

G_

-20

-4O

-60
0.1

l | ¢ | * • • | . I ! i ! s | | ¢

1.0 I0

freq_my (r_l/sm:)

Frequency responses of the uncertaintyand performance weighting functions

fortheSISOexample.

The performance weight We(s) was chosen to provide a "cross-over gap" with respect

to the uncertainty weight Wz(s). That is, the cross-over frequency of the performance

function must be below that of the uncertainty. Obviously, we cannot expect good

performance in frequency ranges where there is a substantial amount of uncertainty. Such a

We(s)is

2
s +8s+64 100

We(S) = 333s 2 s + 100
(5.15)
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The Bode plotof the performance weight isalsoshown inFigure5.2. Note thatahigh-

frequencypole was added tomake We(s) strictlyproper,asrequiredby theDoyle/Glovcr

paramcterizationin Section4.2.1.The frequencyresponse flattensout above 8 radians/

second,and thenrollsoffforfrequenciesabove 100 radians/second.

The designplantmodel P (Eqn 1.27)isdefinedby Eqns. (5.2),(5.8),(5.14),and

(5.15).The H** designprocedure in section4.2.1was used tocompute thenominal

compensator forP. The structureof P (i.e.a multiplicativeuncertaintyattheplantinputand

aperformance specificationatthe plantoutpu0 definesa four-blockI-I**problem [20].The

y-iterationproduced a minimum y of 10.2,and a nominal compensator with thetransfer

function

44.6s 7 + 388s 6 + 3229s 5 + 3053 4 + 8368s 3 + 3973s 2 + 1177s + 176

Znom(S) = 8
+ 441s 7 + 1820s 6 + 4861s 5 + 8985 4 + 11592s 3 + 9559s 2 + 188s + 0.93

(5.16)

The Bode plot of Kno m is shown in Figure 5.3. The response indicates two low frequency

poles and very lightly damped poles and zeros at approximately 2 radians/second (see Table

5.1). Note that the order of Kno m is eight, not nine as expected, because the H** design

produced a pole/zero cancellation.
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Figure 5.3 Frequency response of the nominal compensator Kno m designed by the I-L.

methodology.

Table 5.1: Poles and zeros of the H.. compensator Kno m for the SlSO example.

Poles Zeros

-0.01 -0.26

-0.01 -0.13 5: 0.28j

0.01 + 1.85j -0.09 + 1.58j

-1.16 + 1.44j -4.0 + 6.93j

-1.82

-437
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The singular value and structured singular value frequency response of the nominal

closed-loop system Sno m = FI(P, Kno m) is displayed in Figure 5.4. The (_ plot has the "all-

pass" response characteristic of an I-I**design. In this case, the largest singular value (_ is a

tight upper bound on It. This design does not exhibit robust performance with respect to the

weighting functions in Figure 5.2 because yis larger than 1 (Tnom = 10.2). The nominal

robustness margin Pnom = 0.098. Figure 5.5 contains the frequency response of the D

scaling associated with the tx computation (i.e. Dnom).
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Figure 5.4 Frequency response of the nominal closed-loop transfer function Snom.
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Figure 5.5 Frequency response of the scaling Dno m.

Now that the nominal system has been computed, the CRM may proceed. All stable

closed-loop transfer function matrices S are parameterized in terms of a transfer function

matrix Q.

S = Tll + T12 QT21 (5.17)

where T 11 =Snom and Q • I"L.

The optimal noncausal parameter Q* was computed, at 60 points over the frequency

range from 0.1 through 10 radians/second, by maximizing the closed-loop robustness

according to Eqn. (4.55). A seventh-order rational approximation Q* was found using a

least-squares fit.
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-"; -0.51s 6 - 6.18s 5 - 1.08 4 - 15.71s 3 + 8.21s 2 - 0.37s + 0.0011

Q- 7 (5.18)
s + 0.15s 6 + 2.88s 5 - 0.063s 4 +l.03s 3 - 0.090s 2 + 0.24s + 0.15

m

The frequency responses of Q* and its rational approximation Q* are in Figures 5.6 and 5.7.

The Hankel norm of Q* is 3.64; Q* is not in I-I**because of the right half plane poles (see

Table 5.2).

Recall that the optimization problem in Eqn. (4.55) is convex at each frequency and all

local minima are global. The real and imaginary parts of Q*, at each frequency, were the

parameters in the optimization, and the pattern search algorithm in [43] was used to compute

Q*.

Table 5.2: Poles and zeros of Q* for the SISO example.

poles

-0.09 + 1.58j

-0.21 + 0.67j

0.40 + 0.44j

-0.34

Zeros

0.0032

0.047

0.42

-0.22 + 1.67j

-12.15
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Figure 5.6 Nyquist plot of Q* (solid) and its rational approximation Q* (dashed).
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Figure 5.7 Bode plot of Q* (solid) and its rational approximation Q* (dashed).
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Thescaledfrequencyresponseof the optimal noncausal closed-loop transfer function

matrix, T11+T12Q*T21, is shown in Figure 5.8, along with the nominal response Snom=

Tll. The robustness margin of the noncausal design is p* = 1.12, an order of magnitude

improvement over the nominal design (PhOto = 0.098). The robustness bound 7* = 0.89.

Although no real significance can be attached to the compensator associated with Q*, because

it does not yield nominal closed-loop stability, its frequency response is contained in Figure

5.9.
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Figure 5.8 Frequency response of the scaled closed-loop transfer function matrix,

Dnom(T 11+T12QT21)Dnom -1, for Q = 0 (nominal), Q = Q* (optimal

noncausal), and Q = Q* (rational approximation).
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Bode plot of the noneausal compensator resulting from Q*.

The next step in the CRM is the causality recovery process. The parameters _1 and e 2

(from the causality recovery algorithm in Section 4.6) were chosen to be 0.01 and 0.1,

respectively. The time constant 13= 0.1. Given the relatively large Hankel norm of Q* (=

3.64), the initial robustness specification Y0 = 2 (vs. _ = 0.89). This choice of y0 gives the

causality recovery algorithm "room" to reduce the Hankel norm, while y is still significantly

less than Ynom = 10.2.

The CRM algorithm produced the sequence of Hankel norms shown in Figure 5.10.

Each element represents the minimum Hankel norm over some feasible set • defined by the

order n of Q and the robustness specification y. Table 5.3 summarizes the CRM for this

SISO example.
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Figure 5.10 Hankel norm sequence generated by the CRM algorithm.

Table 5.3: The causality recovery process for the SISO example.

Hankel norm

Iteration Number n 2/ _ Final

1 7 2.0 3.64 0.48

2 8 2.0 0.48 0.37

3 9 2.0 0.37 0.26

4 10 2.0 0.26 0.20

5 10 2.8 0.20 0.004

6 ...... 0.004 0



Chapter5 Page128

Theorderof theQ parameter is increased each time an improvement in the Hankel norm

of greater than e2 (= 0.1) occurs. When this degree of improvement is no longer achieved

(iteration 4), the specification T is increased to 2.8 according to the difference equation in

Section 4.6 (15 = 0.1). Iteration 5 produces a Q whose Hankel norm is less than e x (= 0.01).

This terminates the causality recovery process, and iteration 6 consists of simply finding the

best I-L. approximation of the function from iteration 5 (see Section 2.2.3). The result is a

stable, causal function Q (Eqn. 5.19 and Table 5.4). The order of Q is less than 10 because

of unstable pole/zero cancellations that occur as part of the causality recovery process.

0.29s 6 - 4.44s 5 - 13.52s 4 - 27.97s 3 - 39.58s 2 - 25.31s - 4.91
Q = (5.19)

7s + 3.08s 6 + 6.41s 5 + 10.39s 4 + 10.06s 3 + 6.41s 2 + 2.77s + 0.47

Table 5.4: Poles and zeros of the Q _ _ for the SISO example.

Poles Zeros

-0.08 + 1.59j -0.33

-0.20 + 0.68j -0.98

-0.32 -1.03

-0.88 -0.27 5: 1.65j

-1.31 18.37

The evolution of the Q parameter in the causality recovery process is shown in Figures

5.11 and 5.12. Each frequency response represents a Q parameter that minimizes the Hankel

norm over a feasible set. Figure 5.11 and 5.12 demonstrate how the frequency response of

Q is adjusted, subject to the constraint imposed by the feasible set, to reduce its noncausality.
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Figure 5.11 Nyquist plot of the Q parameter evolution from causality recovery.
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Figure 5.12 Bode plot of the Q parameter evolution from causality recovery.
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Figure 5.13 contains the scaled frequency response of the closed-loop transfer

function, Dnom(Tll+T12QT21)Dnom -1, as the Q parameter goes from the optimal noncausal

Q* to the causal solution. For y = 2, the Hankel norm is reduced by increasing the order of

the Q parameter. Finally, a causal Q is found by increasing the robustness bound to 2.8.

The robustness margin is p = 0.38 for the final, causal design. This is less than the optimal

p* = 1.12, as expected, but is much larger than the nominal robustness margin of Pnorn=

0.098. A comparison of the closed-loop structured singular values, 11(Tll+T12QT21), is

contained in Figure 5.14. Notice that performance-robustness in the low frequency region is

sacrificed to improve robustness in the II• II. sense.
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"_ --_. _"_ _. I _._."_,

I I I I I I I I I I I I .

0.1 1.0

frequercy (rad/sec)

I0

Figure 5.13 Evolution of the scaled closed-loop transfer function,

Dnom(Tll+T12QT21)Dnom -1, as Q becomes causal.
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Figure 5.14 Comparison of the structured singular value frequency responses of the

nominal and CRM closed-loop transfer functions.

The frequency response of the final compensator from the CRM is in Figure 5.15. The

CRM response is precisely what one would have expected from a classical design method.

The plant G is characterized by high gain and large phase lag due to the double integrator.

This suggests a low gain lead-lag compensator. The CRM compensator is of this type with a

sharp notch at the bending mode frequency.

Although the nominal compensator Kno m (Eqn. 5.16) has degree 8 and the stable,

causal Q (Eqn. 5.19) has degree 7, the frequency response in Figure 5.15 can be

approximated closely by a sixth order transfer function (see Table 5.5).
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(5.20)
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Figure 5.15 A comparison of the fiv,quency responses of the nominal and CRM

compensators.

Table 5.5: Poles and zeros of the CRM compensator for the SISO example.

Poles Zeros

-0.19 + 0.47j 0.0035 + 1.62j

-0.21 + 1.71j -0.22 + 0.46j

-1.51 + 0.49j -0.19
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Several interesting comparisons can be made with Kno m. The CRM K is stable,

whereas the nominal I-L. compensator is unstable. In addition, K does not have any very low

or very high frequency poles; however, K does have a pair of lightly damped, non-minimum

phase zeros. These zeros form a notch filter, to reduce the influence of the lightly-damped

bending mode, at a frequency of 1.62 radians per second. Since these zeros are so close to

the imaginary axis, it is conjectured that a minimum phase compensator may also satisfy the

same robust performance specification. The transfer function in Table 5.5 is the fast robust,

causal compensator that the CRM found; it certainly is not unique. Thus, the CRM has

improved the performance-robustness of the closed-loop system by substantially lowering

the compensator gain at low frequencies and adding a sharp notch at the nominal bending

mode frequency.

In order to assess the merits of the CRM in familiar terms, we will interpret the above

results in the context of the standard feedback configuration in Figure 5.16. The (output)

sensitivity R(s) and the (input) complementary sensitivity C(s), as defined in Section 1.2.6,

will be examined. In addition, the response to a step command r and a sinusoidal disturbance

d will be evaluated.

r
K G

d

Figure 5.16 Standard feedback loop for evaluation of the compensator designs.
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Theprimarygoalof theCRM is to design a compensator and closed-loop system that

exhibits robust stability and performance with respect to some given modeling error and

performance specification. Therefore in order to clearly demonstrate the benefits of the

CRM, the response of the closed-loop system must be evaluated with respect to not only the

nominal plant G, but some legal perturbed plant G. G is a member of the set of possible

plants defined by the nominal plant G and the uncertainty weighting function.

To define a legal perturbation, we must first recall the condition for robust stability and

performance of the closed-loop system S (see Section 3.4).

II g(S) I1,, < 1 (5.21)

From Figure 5.14, we see that the CRM design does not meet the condition in (5.21), with

respect to the weighting functions in Eqns (5.14) and (5.15). However, the CRM design is

robust (i.e. II Ix(S) I1.. < 1) with respect to the original weighting functions scaled by the

CRM robustness margin (p = 0.38). That is, let W z = 0.38W z and W e = 0.38W e. This

rescaling merely shifts the y-axis of Figure 5.14. Note that the nominal H** design still does

not exhibit performance-robustness with respect to the scaled weights. For the remainder of

this example, it will be assumed that the weighting functions have been scaled such that the

CRM design satisfies the condition in Eqn. (5.21).

The set of possible plants G is

N

G = G[I + L _] (5.22)

where G is defined by Eqns. (5.2) and (5.8), and I L'(jto) I is bounded by the new (scaled)

uncertainty weighting function Wz(s). Then, a legal perturbation is simply

L' = kW z (5.23)
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wherek < 1. For thisexamplek waschosento be0.8,and a plot of the frequency responses

of the uncertainty weight and the selected perturbation is shown in Figure 5.17. The

perturbed plant G Bode plot is shown in Figure 5.18. Compare this Bode plot to that in

Figure 5.1. Note the dynamics around 1.5 radians/second and the increased gain in the high

frequency region.
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Figure 5.18 Frequency response of the perturbed plant G.

Figures 5.19 and 5.20 show the complementary sensitivity frequency responses for the

plant G. The complementary sensitivity associated with the nominal (H**) compensator is

quite poor. In fact, it does not satisfy the stability-robustness condition in Eqn. (1.20). We

will see that the perturbation in Eqn. (5.23) will drive the closed-loop system, with the

nominal compensator, unstable. Of course, the complementary sensitivity of the CRM

design is well-behaved and satisfies the stability-robustness condition.

The complementary sensitivity responses for the perturbed plant G are in Figures 5.21

and 5.22. As expected, the nominal (I-I_) compensator produces a terrible frequency

response. The CRM design is still acceptable, and is almost insensitive to the rather large

perturbation defined by Eqn. (5.23). Note that the frequency response of the uncertainty

weight has been plotted for reference purposes only, and there is no significance to the fact

that the response in Figure 5.21 violates the stability-robustness condition.
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Figure 5.19 The frequency response of the complementary sensitivity function with

plant G and the nominal compensator.

60

40

2O

A

-_ 0

-20

"_P-40'

-6O

-8O

-I00
0.I

Ic(j )l

I I l I I I I I I I , i . i . i i

1.0 I0

frequency(radlsec)

Figure 5.20 The frequency response of the complementary sensitivity function with

plant G and the CRM compensator.
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Figure 5.21 The frequency response of the complementary sensitivity function with

pe_ plant G and the nominal compensator.
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Figures 5.23 through 5.26 show the frequency response of the sensitivity function and

the inverse of the performance weight. The nominal compensator violates the performance

specification (Eqn. 1.21) in both cases (i.e. for plants G and G). The CRM design, on the

other hand, meets the specification for either plant, and the sensitivity is almost unaffected by

the perturbation. Note that the H** design does exhibit better sensitivity at low frequencies.

The output (y) responses to a unit step reference command (r) are shown in Figures

5.27 through 5.30. The step response of the closed-loop system with plant G and the

nominal compensator is highly oscillatory. While the step response of the CRM design with

the nominal plant G is oscillatory (Figure 5.28), it is far better than the _ design. When the

perturbed plant is in the feedback loop with the nominal compensator, an unstable system

results (Figure 5.29). On the other hand, the step response of the CRM compensator with

the perturbed plant G (Figure 5.30) appears to be slightly better than that with the nominal

plant G (i.e. there is slightly less overshoot). It is clear that the large amount of modeling

error, as defined by W z, severely limits the performance of the I-L, design. This suggests

that the (unscaled) four-block H** problem is not particularly well-suited for solving the

robust performance problem, at least in this ease.

For completeness, the output (y) response to an additive output disturbance (d) at a

frequency of 0.1 radians/second is included in Figures 5.31 through 5.34. As the sensitivity

function indicated (Figure 5.23), the disturbance-rejection of the I-I**design with the nominal

plant is quite good, and better than that of the CRM design at a frequency of 0.1

radians/second (Figure 5.32). Figure 5.33 dramatically illustrates the effect of a legal

perturbation on the nominal design. Again, the response of the CRM design in Figure 5.34

is insensitive to the perturbation.
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Figure 5.29
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Figure 5.31
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ThisexampledemonstrateshowtheCRM starts with a nominally stabilizing design and

improves the performance-robustness of the closed-loop system. In fact, the CRM design

was fairly insenstive to the large perturbation used in the example. That is, the closed-loop

response did not vary significantly even with substantially different plants in the feedback

loop.

There are significant costs associated with the performance improvement, however.

Running on a MicroVAX II workstation, the causality recovery process took approximately 8

hours (in batch mode). Six hundred million floating point operations were performed, as

computed by the software package PRO-MATLAB. An issue that will not be discussed

further is whether the performance benefits of the CRM outweigh the computational costs.

5.3 MIMO Case: A Benchmark for Ix-Synthesis

The example discussed in this section is a multivariable system created by G. Stein

[48]. It is an academic problem of very simple structure; however, it turns out to be a

challenge for g-synthesis, and local minima have been achieved. Thus, this simple example

is quite rich and may serve as a useful benchmark for the robust performance problem.

Again, this example should be thought of in terms of the conventional feedback framework in

Section 1.2.6.

The nominal plant is

E:°lG(s) = s a"1
(5.24)

The condition number of G is a2. A poorly conditioned plant may limit the performance of a

feedback system, and some type of Ix-synthesis method should prove useful in achieving



Chapter5 Page147

adequateperformanceandrobusmess.For a = 5 the singular values of G are shown in

Figure 5.35.
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The frequency response of the singular values of the plant G for the

MIMO example.

There are modeling errors associated with the nominal plant in Eqn. (5.24) This

uncertainty will be described by a multiplicative perturbation at the plant input. The perturbed

plant is then

N

G = G[I + L] (5.25)
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Theboundon the multiplieative error L is given in the problem statement as

Wz(S) - 0.5(s + 1)
1000

s+ 1000 (5.26)

The singular values ofW z are shown in Figure 5.36. The two singular values are equal

because of the simple structure of the transfer function matrix. The modeling error is

relatively small at low frequencies and rises with increasing frequency. The high-frequency

pole in Eqn. (5.26) was added to make the transfer function matrix proper.

After examining Eqns. (5.24) and (5.26), one may conclude that the system is

decoupled and can be treated as two SISO problems. This is not the case, however. The

diagonal uncertainty weight merely provides a bound on the singular values of the

multiplicative perturbation; a legal perturbation may be a full transfer function matrix. In

such a case, the perturbed plant G would be coupled. Thus, this problem is truly

multivariable in nature and may not be treated as two SISO designs. In the sequel, we will

evaluate the performance of the CRM design with one of these coupled plants.

The weighting function on performance was chosen to provide a cross-over gap with

respect to the uncertainty weight in Eqn. (5.26).

We(s) = s s + 1000 (5.27)

The high-frequency pole was added to make the transfer function matrix strictly proper, as

required by the I-I**design procedure in Section 4.2.1. The singular values of the

performance weighting function are shown in Figure 5.36. Again, the two singular values
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areequalbecauseof the structure in Eqn. (5.27).
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The singular values of the uncertainty and performance weighting

functions for the MIMO example.

The plant G and the weighting functions W e and W z define the design plant model P,

according to Eqn. (1.27). Two preliminary designs were performed for this example: an H**

and a nonconverged DK iteration. The Doyle/Glover y-iteration in Section 4.2.1 was used to

compute the I-I**compensator. This produced a minimum Y = 1.91, and the diagonal

compensator (Eqn. 5.28 and Table 5.6) shown in Figure 5.37. The frequency responses of

the largest singular value and the structured singular value of the closed-loop transfer

function S = FI(P, K) are plotted in Figure 5.38. The robustness margin of this design is

p = 0.52.
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K_

6s 3 + 2760s 2 + 388660s + 235242

s 4 + 654s 3 + 110577s 2 + 864864s + 865

0

0

1.2s 3 + 1193s 2 + 387134s + 47217

s4 + 647s 3 + 106338s 2 + 173677s + 174

(5.28)

Table 5.6: Poles and zeros of the H** compensator for the MIMO example.

Kll

Poles Zeros

-0.001 -0.61

-8.21 -230 :!: 108j

-323 + 33.1j

K22 -0.001 -0.12

-1.65 -478 + 286j

-323 + 33.1j
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Thesecondcompensatorwascomputedby Stein [48]. The design, which represents

the best compensator available in June 1987, is an intermediate result of the DK iteration.

The singular values of this diagonal compensator are shown in Figure 5.39, and the

characteristics of the associated closed-loop transfer function S = FI(P, K) are shown in the

following figure. The structured singular value response is all-pass with a robustness bound

y = 1.64 and a robustness margin p = 0.61. Comparing Figures 5.38 and 5.40 we see that

the second design (p = 0.61) is superior to the H** design (p = 0.52) in terms of

performance-robustness.

The (nonconverged) DK iteration compensator was chosen to be the nominal design for

the reason just cited. It is a diagonal, proper system whose singular values are matched at

high and low frequencies.

0.45s 2 + 0.70s + 0.54

s 2 + 0.70s + 0.25

K ,,_
nonl

0

0.45s 2 + 1.30s + 1.85

2
0 s + 1.30s + 0.84

(5.29)

The poles and zeros of each element of Kne m are listed in Table 5.7. The D scaling

associated with this design is given in Figure 5.41.

Table 5.7: Poles and zerosof the nominal compensator Kno m forthe MIMO example.

Kll

Poles Zeros

-0.35:I:0.35j -0.77 + 0.77j

K22 -0.65 + 0.65j -1.43 + 1.43j



Chapter 5 Page 153

A

"_-2

-4

-6

._ I I I I IIIII I I . . n.... i i i i .,.,. i i i i llll

0.01 0.1 1.0 10 100

frequency (radlsec)
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Figure 5.41 The frequency response of the sealing Dno m.

With the nominal system defined by Eqn. (5.29), the CRM is started. The Youla

parameterization produces the set of internally stable transfer function matrices S that are

affme in the free parameter Q (F_.qn 5.17).

The optimal parameter Q* was computed, according to Eqn. (4.55), at 80 frequency

points over the range from 0.01 to 100 radians/second. Not surprisingly, Q* is diagonal.

An eleventh-order least-squares fit was performed to find a rational approximation Q*. The

result is

n -0.45s 6 - 4.24s 5 - 9.40 4 + 2.32s 3 - 3.38 2 - 1.08s - 0.26
= (5.30)

Qll s 6 - 0.025s 5 - 0.52 4 - 1.51s 3 + 0.96 2 - 0.98s - 1.90
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-O.O05s5- 0.214 + 1.11s 3 + 1.62s 2 + 0.29s + 0.017

Q22 = 5 (5.31)
s - 0.55s 4 + 0.35s 3 - 0.34s 2 + 0.31s + 0.037

The frequency responses of the diagonal elements of Q* and Q* are shown in Figures

5.42 through 5.45. The "x's" represent the complex value of Qii* at a specific frequency.

Note that there is "numerical noise" at low gains (see Figures 5.43 and 5.45). The poles and

zeros of Q* are listed in Table 5.8. The Hankel norm of Q*ll is 1.27, and the Hankel norm

of Q'22 is 1.20. The singular values of the diagonal, noncausal compensator associated with

Q* are shown in Figure 5.46.

n

Table 5.8: Poles and zeros of Q* for the MIMO example.

Q'22

Poles

-0.86 + 1.03j

0.54 + 0.85j

-0.74

1.41

-0.30 + 0.71j

0.63 + 0.45j

-0.11

Zeros

-0.15 + 0.19j

0.32 + 0.56j

-4.86 + 0.39j

-0.10 + 0.05j

- 1.02

5.82

-48.3
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Figure 5.46 The frequency response of the singular values of the noncausal

compensator resulting from Q*.

The largest singular value responses of the optimal noncausal closed-loop function and

its rational approximation, T11+T12Q*T21, are plotted in Figure 5.47. The robusmess bound

is y = 0.91, and the robustness margin is _ = 1.10.
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Frequency response of the scaled closed-loop transfer function matrix,

Dnom(T1 x+T12QT21)Dnom -1, for Q = 0 (nominal), Q = Q* (optimal

noncausal), and Q = Q* (rational approximation).

The next step is to find a stable, causal Q, using the causality recovery algorithm in

Section 4.6, that improves the robustness of the nominal system (PhOto = 0.61). For

computational reasons (speed and numerical), the parameter e.2 was set to a large value. This

effectively removed the inner loop from the algorithm, i.e. the loop that increases the order of

the Q parameter. Thus, the order of the Q parameter remained fixed at the order of Q*

throughout the causality recovery process, and the only way to reduce the Hankel norm was

to relax the robustness specification "y.
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Remark The large value of _ will not affect the ability of the algorithm to find a stable,

causal solution. According to Theorem 4.9, we can always construct a sequence of functions

of fixed McMillan degree such that the associated Hankel norm sequence approaches zero

and the nominal performance specification is satisfied. However, the amount of

performance improvement (over the nominal design) may be reduced.

It should be mentioned that this example was also run with _ set to a small value (0.1).

The resulting increase in the order of the Q parameter produced a Iremendous computaional

burden (i.e. the program ran for approximately 6 days on the MicroVAX and still had not

found a causal solution). In addition, it appeared that no noticeable improvement in

performance was going to be obtained.

For £1 = 0.01 and I_ = 0.4, the causality recovery algorithm produced the sequence of

Hankel norms shown in Figure 5.48. Figure 5.49 contains the relaxation of the robustness

specification y that was needed to reduce the l-lankel norm. The frequency response of the Q

parameter evolution, as y was increased, is documented in Figures 5.50 through 5.53. Each

frequency response function represents a Q parameter that minimizes the Hankel norm over a

feasible set defined by y (the order of Q is fixed at 11). Figures 5.50 through 5.53 illustrate

how the frequency response of the Q parameter is adjusted to reduce its Hankel norm, subject

to the constraint imposed by the feasible set.
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Figure 5.53 Bode plot of the Q22 parameter evolution from causality recovery.



Chapter 5 Page 164

The progress of the scaled closed-loop transfer function matrix,

Dnom(Tll+T12QT21)Dnom "1, is shown in Figure 5.54 as the Q parameter goes from Q* to the

causal solution. Each closed-loop frequency response represents the noncausal function

associated with the Q that minimizes the Hankel norm over the feasible set. As the

robusmess specification _ is increased, the largest singular value of the closed-loop frequency

response rises to the limit imposed by _/. This rise is accompanied by a reduction in the

minimum Hankel norm over the feasible set.
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Figure 5.54 Evolution of the scaled closed-loop transfer function matrix,

Dnom(Tll+T12QT21)Dnom d, as Q becomes causal.

The robusmess margin of the final, causal design is p = 0.63 (vs. Pnom= 0.61). There

are several possible explanations for this very slight improvement. First, the decision to keep

the order of the Q parameter fixed is suspect. This conclusion is discounted because of the
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remarkmadeearlierthatincreasingtheorderof Q appearedto havenobenefit.A second

possibilityis thatthenominalcompensatoris agooddesign(i.e.very closeto anoptimal

solution). AdditionalDK iterationssuggestthatthis is thecase.

TheQ • H** produced by the CRM follows.

-(0.014s 3 + 0.11s 2 + 0.37s + 0.29)
Qll = 3 (5.32)

s + 2.53s 2 + 2.94s + 1.05

0.18s 4 + 0.29s 3 + 0.044s 2 + 0.0027s + 0.0001

Q22 = 4 (5.33)
s + 1.75s 3 + 1.56s 2 + 0.16s + 0.0045

Table 5.9: Poles and zeros of the Q • H** for the MIMO example.

Qll

Pol_s .Zeros

-0.58 -1.06

-0.97 __0.93j -3.37 5: 2.87j

Q22 -0.047 -0.051

-0.070 -0.054 + 0.042j

-0.82 + 0.83j -1.44

The singular values of the CRM compensator are shown in Figure 5.55. The response

is no longer round at low and high frequencies; however, the CRM and nominal designs are
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virtually identical in the mid-frequency range (compare with Figure 5.39)..The CRM

compensator frequency response can be very closely approximated by a fifth-order, diagonal

transfer function (see Table 5.10).

.-

0.44s 3 + 0.87s 2 + 0.82s + 0.25

3s + ---1.16s2 + 0.66s + 0.18

0

0

0.64s 2 + 1.38s + 1.67

2
s + 1.17s + 0.73

(5.34)

Table 5.10: Poles and zeros of the CRM compensator for the MIMO example.

Kll

Poles Zeros

-0.30 + 0.48j -0.74 + 0.76j

•-0.56 -0.50

K22 -0.58 ± 0.63j -1.09± 1.20j

A close-upcomparison of the structuredsingularvaluesofthe CRM and nominal

closed-looptransferfunctionsisshown inFigure5.56. The responses are of similarshape,

while the CRM design exhibitsa (slight)robustnessimprovement (p = 0.63 vs.Pnom=

0.61).
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Figure 5.55 The frequency response of the singular values of the CRM compensator.
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Once again, these results must be interpreted in terms of the conventional feedback loop

in Figure 5.16. It is clear from Figure 5.56 that the nominal and CRM compensators result

in very similar closed-loop maps. Other than the very slight improvement in robustness, we

would not expect the responses of these two systems to be significantly different. Therefore,

the primary comparison will be between the I-I**design in Figure 5.37 and the CRM design.

Recall that the robustness margin of the I-I**design is 0.52 and that of the CRM is 0.63.

Since the robustness margin of the CRM design is less than one, we will have to scale

the uncertainty and performance weighting functions by 13= 0.63, i.e. W z = 0.63W z and

W e = 0.63W e. The CRM design now satisfies the condition in Eqn. (5.21) with respect to

the scaled weights. In the remainder of this section we will deal only with the scaled

weighting functions.

The response of the closed-loop system in Figure 5.16 will be examined for some

legal, perturbed plant G. G is a product of the nominal plant G and some multiplicative input

uncertainty (E,qn. 5.27). In this case, the perturbation L will have the structure

(5.35)

where lij are SISO transfer functions.

Since the plant G is nominally diagonal (F_,qn, 5.24), we would like the perturbation L

to introduce coupling in the plant. For this purpose, 111 and 122 are taken to be identically

zero, and let 112 = 121. Then, the two singular values of L at a particular frequency to are

equal and equal to

a [L0to)] = I 112(Jto) I (5.36)
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For this example, a legal perturbation is

ks
1 f 't

q2_s; = s + 5 (5.37)

where k = 1.75. The singular values of the uncertainty weight and the perturbation L are

shown in Figure 5.57. Note that L is a legal perturbation because it is bounded by W z over

all frequencies. Then,

N

G=

a ka

s s+5

ka -1 a-1

s+5 s

(5.38)

N

where a - 5 and k = 1.75. Figure 5.58 contains the singular values of G.
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The singular values of the complementary sensitivity and the sensitivity transfer

functions will be presented for six cases: three compensators and two plants. The

compensators are the H,, the nominal (i.e. nonconvcrged DK iteration), and the CRM

designs. The closed-loop system with the nominal plant G and the perturbed plant G is

examined.

Figures 5.59 through 5.64 contain the frequency responses of the complementary

sensitivity function for the six feedback loops. All three designs with the nominal plant G

have "nice shapes" and satisfy the stability-robustness condition in Eqn. (1.20). Therefore,

legal perturbations will not drive the system unstable. With the perturbed plant G in the

loop, the I-I. design exhibits the most performance deterioration. The complementary

sensitivity develops a large, broad peak around 2 radians/second (Figure 5.62). The

responses of the nominal and CRM designs arc similar.

The singular values of the sensitivity function for each case are plotted in Figures 5.65

through 5.70. The performance specification is met by all three compensators when the

nominal plant G is in the loop. The I-Io. design is characterized by a significantly lower

sensitivity at low frequencies (Figure 5.65), when compared to the nominal and CRM

designs. For the perturbed plant G, the _ design no longer meets the performance

specification (Figure 5.68). The violation occurs in the frequency range of 1 to 2

radians/second. The nominal and CRM designs meet the specification with the perturbed

plant in the loop (Figures 5.69 and 5.70). However the frequency responses are no longer

round above 5 radians/second, as they were with the nominal plant.
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Figure 5.61 The singular values of the complementary sensitivity function with

plant G and the CRM compensator.

2o

,-. -20

v

_D

-40

"_ -60

-80

• . w i mmi1w m w • .i..i. _ l m m ...ww _ | • , w,w,

..........

.... "_,,_, ........"_.., .........

%%

\

"1000.01 ...................................0.1 1.0 10 100

frequency (radlsee)

Figure 5.62 The frequency response of the complementary sensitivity function with

N

perturbed plant G and the I-I**compensator.



Chapter 5 Page 174

20 . | , ,i.,.. i | i ..i... . . . . ,,.wt . . . i ....

_oI......................cr[%'(j_)]

a[cO_)

®-z0 ", .....
\, ""-.,._,,

"_ -30 \"
-40

:!o,-60

. * * s |||lit

• 0.1

%%%.%

* J . . |s|t| i , i |||||i

1.0 10

frequency (radlsec)

| * | | ,**i

lOu

Figure 5.63 The singular values of the complementary sensitivity function with

pemn'bed plant G and the nominal compensator.

*'70 0.01 .........................0.1 1.0 i'O ...... ['_

frequency (radlsec)

Figure 5.64 The singular values of the complementary sensitivity function with

perturbed plant G and the CRM compensator.



Chapter5 Page175

| • | i i |l••• i i | = Jl==• i i i i Illlw I | W I ll•l

cr[w;t(J= 

........_ //'-/
_'20 .," J'

*, / //'/

-4o /a[R(j=)]"
_/

//

-60 /

//

"80 /'/

= J ==Ill

-tOOo.ot ' , 0.1.
i i J i i|lt| 1 i i i ll|tt i | i i =1o ib0
frequency (rad/see)

Figure 5.65 The singular values of the sensitivity function with plant G and the

I-I**compensator.

20

10

0

-tO

-20

-30

-40

-50

-60

-7C

Figure 5.66

• = i • =|l=l i i • • •wiwl u = = • wl=•• • w i i i••l

a[w;'(j=)]_,_....................................

.., e°'#

• ee° "°'°" /

t°.s" I0'

.s. o°" . ¢l

_jj/J

aj 'j

/s"

0.01 ............... 0.1 i'.b ................. 10 100

frequency (rad/sec)

The singular values of the sensitivity function with plant G and the

nominal compensator.



Chapter 5 Page 176

2o

1o

,D -10
v

_D

-20

"_ -:31]

-4O

• . • | |w.m. . . . . ..... w . . . l|v|| . . 1 .1,1.

o[w;l(j_)] ......................................................

: .. o°'S°B °_ s ° .s "°'°e "" .-°° _ --_---- --

o:'°_

...'"'Y I"

_R (j_)] ...-"/"
j_

,,pj.ja

-50 -'"/"'f

j-'
t

i i i i DI i

"600-01 ' ' 0.1 ....................... i8o1.0 10

frequency (radlsec)

Figure 5.67 The singular values of the sensitivity function with plant G and the

CRM compensator.

2o

o

_. -2o

Q

_-,_

-8O

-100

o[%" .....
_ ooO"°"°'°"

....j_.j., ...1." //,,,.f..,.,.,-
.B "S''°t s°°°'/ _ _

j j-

7 I"

/o[R(j_)]:"
S S

/
/;

,,'f

......................... iO ..... iO0_.01 0.I 1.0

frequency (rad/sec)

N

Figure 5.68 The singular values of the sensitivity function with perturbed plant G

and the H** compensator.



Chapter 5 Page 177

2O

10

•-- -10
o_

v

-20

"_ -30
-40

-5O

-I.
ofwo 0_)] ...................................................................................

.¢ oo. "t °°°''° d,f /

.:""" o[R(j_)] ,/"
./

S r

aa 'S

j/sf ''f"

,jpa

-60 '"

-7000 ! .........• 0.1
I I I | ''''| | , i i lJ|ll i | , J ill

1.0 I0 I00

frequency (radlsec)

N

Figure 5.69 The singular values of the sensitivity function with perturbed plant G

and the nominal compensator.

10

.o -1o

-20

"_ -30

-4O

-5O

-I.

o[% 0_)] ..........................................................................

e,':_

s°'°"s° /

_ ...f
J_)] ./

.,./,J"/J

j.'
r

-6oo.oI' .....o.'i.......................i.o io ibo
frequency(rad/sec)

N

Figure 5.70 The singular values of the sensitivity function with perturbed plant O

and the CRM compensator.



Chapter5 Page178

Theoutput(y) responsesto a reference command r = [1 1]' are in Figures 5.71 through

5.75. The step responses with the nominal plant G are quite good. Note that the response of

the closed-loop with the nominal compensator and the nominal plant G is not included

because it is very similar to the CRM response. The Yl response of the I-I**design exhibits

18% overshoot and no undershoot (Figure 5.71). The Yl response of the CRM design has

the same overshoot, and a little undershoot (Figure 5.72). However, the settling times of the

two designs are about the same (6 seconds). The Y2 CRM response has much less overshoot

and a significantly faster settling time than the I-I**design.

The I-I**compensator and the perturbed plant produce a poor yl step response, shown

in Figure 5.73. However, the Yz response is unaffected by the perturbation. The step

responses of the nominal and CRM designs, with G, are in Figures 5.74 and 5.75. The Yl

response exhibits over twice as much overshoot, when compared to the response with G in

the loop, but this is significantly better than the I-L, design. Although it is difficult to see

from Figures 5.74 and 5.75, the CRM design results in less undershoot and overshoot (at

3.5 and 6 seconds) as compared to the nominal design. The )'2 responses are virtually

identical, and the same as the closed-loop with the nominal plant G. Note that the Y2

response is largely unaffected by the perturbation because of the factor of a-1 (0.2) in the G21

transfer function (Eqn. 5.38).
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The closed-loop output response to an input command r = [1 1]' with

perturbed plant G and the CRM compensator.

Figures 5.76 and 5.77 contain the closed-loop output response to a disturbance

d = [1 1]'sin(0.1t) for the I-I**and CRM designs with the nominal plant G. The I-L, design

has better disturbance-rejection at this frequency, and the multiplicative perturbation does not

affect the performance at this frequency. Although not plotted, the CRM and nominal

closed-loop responses are virtually identical. Note that while the I'L. design does produce

better disturbance-rejection, the CRM performance meets the specification (see Figure 5.67).
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The disturbance frequency was increased to 1 radianlsecond, and the responses are

plotted in Figures 5.78 through 5.82. Of course, the disturbance rejection is much worse in

general at this frequency because the sensitivity function is near unity. For the nominal plant

G, the Yl response of the CRM design (Figure 5.79) is superior to that of the _ design

(Figure 5.78), while the Y2 responses are the same. The Yl response deteriorates

significantly in the ease of the _ design when the perturbed plant G is in the feedback loop

(Figure 5.80). In the ease of the nominal and CRM designs, the performance degradation is

not as severe. The disturbance rejection of the CRM design is slightly better than that of the

nominal design when G is in the loop (compare Figures 5.81 and 5.82).

In this example, the CRM was tested in a multivariable setting. Only a slight

improvement in performanee-robusmess was achieved. The author believes that the marginal

improvement is a result of the fact that the nominal design was nearly optimal. The

performance and robustness benefits of using the CRM were illustrated vis-a-vis an

design.

The computational requirements of the multivariable example were quite severe. The

CRM performed 1.8 billion floating point operations, as computed by PRO-MATLAB, over

a period of approximately 4 days (in batch mode).
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The closed-loop output response to a disturbance d = [1 1]'sin(t) with

perturbed plant G and the CRM compensator.

5.4 Conduding Rmmdm

We have seen the CRM successfully applied to two design examples: one SISO and

one MIMO. The objective of increasing the robustness margin was achieved in both cases

with finite-dimensional Q parameters. The resulting compensators improved robustness and

were of relatively low order. In fact, the CRM corapensator was of lower order (vs. the

nominal design) in the SISO example.

The inefficiency of the causality recovery algorithm is the most significant drawback of

the CRM. Clearly, the severe computational burden is sufficient to make the CRM

impractical at this time. However, the optimization programs should be parallelizable for

super-computer implementation.
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CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Given the Youla parameterization of all stabilizing compensators in terms of a free

parameter Q, the feedback synthesis problem may be generally stated as: Find a Q in Ho,

such that some closed-loop performance objective is satisfied. Each design methodology is

simply a procedure for finding an appropriate Q to satisfy its specific performance criterion.

The role of modeling error in the feedback design process has been stressed throughout

the thesis. Clearly, the uncertainty must be explicitly incorporated into the design process if

performance is to be optimized and guarantees made concerning robusmess. A realistic

description of the uncertainty results in a perturbation of known structure. Stability and

performance robustness with respect to structured uncertainty is the performance criterion of

interest in this thesis. A necessary and sufficient robustness condition leads to a frequency-

domain inequality on the closed-loop transfer function involving the structured singular

value.

A new design technique, the Causality Recovery Methodology, has been developed for

the synthesis of finite-dimensional, linear, time-invariant feedback systems. Stability and

performance in the presence of multiple, unstructured modeling uncertainties is guaranteed.

The concept of a robustness margin was introduced as a quantitative way of measuring

performance; it has been proven that the CRM will produce a closed-loop system whose

robusmess margin is greater than or equal to that of a given (nominal) feedback system. The

CRM should be viewed as a technique to fine-tune an already reasonable design by exploiting

the degree of freedom available in Q. That is, the method proposed in this thesis should be

used in conjunction, and not in competition, with existing design methods for the possible

improvement of performance-robustness. The CRM requires the solution of a series of
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infinite-dimensional convex programs.

The design examples in the previous chapter demonstrate that the CRM is a viable

design concept and the finite-dimensional algorithm is useful. The CRM increased the

robusmess margin of feedback systems designed with the standard H** theory and the

(nonconverged) DK iteration. The examples also illustrate the benefits of a _t-synthesis

compensator over the _ approach; the performance of the robust designs was fairly

insensitive to the actual plant in the feedback loop, provided that it was a legal perturbation.

While these preliminary results are encouraging, the tremendous computational cost

associated with robusmess enhancement makes the method impractical at this time.

6.2 Directions for Future Research

6.2.1 Robust Feedback Design

The synthesisof a feedback system exhibitingrobuststabilityand performance (i.e.

satisfyingsome I_specification)isa fundamentallydifficultand noneonvcx problem.

Nonconvexity impliesthata localsolutionmay be encountered. In such a situation,itis

always beneficialtohave more thanone method forattackingtheproblem. Therefore,any

new methods forsolvingtherobustperformance problem arewelcome, and activeresearch

shouldcontinue in thisarea.

The directhandling ofrealparametervariations,theso-calledreal-itproblem, isstillnot

possible.Although some progresshas been made, the analysisof such systems isnot

completelyunderstood. Additionalwork in theanalysisareaisrequiredbeforea synthesis

methodology can be formulated.
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6.2.2 The Causality Recovery Methodology

While the theoretical foundation of the CRM has been laid, additional research is

required before it becomes a practical design tool. The major shortcoming of the CRM is the

computational burden associated with the design algorithm. Specifically, the most

computationaUy intensive part of the algorithm is the minimization of the Hankel norm over

the feasible set.

Part of the problem can be attributed to the particular implementation of the CRM used

for the design examples in Chapter 5. The CRM was written as a function within the

commercially available software package PRO-MATLAB. The optimization solver that

performs the Hankel norm minimization is a basic pattern search algorithm, and was chosen

for its simplicity and ease of programming rather than for speed and efficiency. This

suggests that a dedicated algorithm, written in a compiled language and capable of taking

advantage of the problem structure, may significantly reduce the amount of time required to

f'md a stable, causal solution to the feedback problem. Another possible technique for

improving the efficiency of the CRM would involve the exploitation of the parallel nature of

the optimization problem.

Regardless of the numerical algorithms used by the CRM, its implementation will be

finite-dimensional and nonconvex. Therefore, such issues as starting points and

parameterizations in the Hankel norm minimization are significant. The pole/zero

parameterization of Q was chosen for its numerical and conceptual properties, as well as its

ease of implementation. Other realizations, such as the Jordan form, may prove

computationaUy superior.

The final issue that must be examined before the CRM becomes a useful design

technique. That is, what are the properties of the CRM solution (other than satisfying some

Ix condition)? The CRM is essentially a frequency-domain approach to feedback synthesis,

F
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intimately coupled with the structured singular value as the analysis tool. What are the

implications for time-domain signals other than L2 functions or sinusoids? What pole/zero

structure will the compensator possess?

6.2.3 Extensions of the CRM

The CRM proposes a new approach to feedback system design. That is, the two basic

constraints on the free parameter Q, i.e. the I-L. restriction and the performance specification,

are treated independently. The performance specification is satisfied at each frequency by

complex matrices, and a stable, causal transfer function is recovered from these matrices.

This same philosophy could potentially be applied to other feedback problems.

Through appropriate definition of the feasible set _) a broad class of frequency-domain

problems may be handled. Let f(Q) be some closed-loop performance objective that is a

function of the free parameter Q in the Youla parameterization. Define acceptable

performance as f(Q) < 1, and the feasible set is simply

• ={Q_ L**If(Q)<I }

The familiar optimization problem must then be solved.

The convexity of the above problem will determine the usefulness of this method. However,

the framework is quite general, with the H 2 and I-I**problems as convex special cases.

This framework will admit several other interesting problems, but a great deal of

research is needed to determine its feasibility as a design method. Assuming a real-Ix analysis
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tool is available, this may be one approach to the synthesis problem with real parameter

variations. That is, the feasible set would be defined in terms of the real-It function; and the

Hankel norm minimization would be performed over the set of L.. frequency responses that

satisfy some real-It performance specification. Besides being a useful design methodology in

its own right, the real-It solution has implications for adaptive control as wen. It is believed

that such a design would prove to be a useful benchmark for the adaptive control problem.

The true performance benefits of a time-varying compensator could be quantitatively

evaluated with respect to the best fixed-parameter, real-It design.

It may also be interesting to investigate the possibility of integrating time and frequency

constraints into the definition of the feasible set. This would represent a significant step in

the unification of the time and frequency domains in the design of feedback systems.

Finally, it seems worthwhile, because of the methodology's infinite-dimensional nature, to

explore the extension of the CRM concepts to infinite-dimensional systems (i.e. systems with

delays).
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